State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao 999078, China.
Anal Chem. 2015 Mar 3;87(5):2861-8. doi: 10.1021/ac504325x. Epub 2015 Feb 13.
The inherently limited MS2 rate of the mass spectrometer is still restricting the performance of data-dependent acquisition (DDA) for untargeted metabolomics. When dealing with the complex metabolome ocean, top-n-based DDA is just scratching the surface as only a small fraction of the ions could be selected for MS2. Here, we report an improved DDA method for untargeted metabolomics using gas-phase fractionation with staggered mass range (sGPF). Unlike the single m/z segment for conventional GPF, the m/z segments for sGPF were narrower, multiplex, and discrete to allow more homogeneous selection of precursor ions in low, medium, and high m/z ranges. This was achieved indirectly by predefining an inclusion list containing multiple discontinuous m/z ranges. Five fraction levels (2, 4, 6, 8, and 10) and two staggering strategies (staggered wide and narrow subsegments (sGPFa and sGPFb)) were compared for characterizing the human urinary metabolites. For both targeted and untargeted comparison, the highest MS2 coverage was obtained by sGPFb8. Targeted comparison of 60 metabolites indicated sGPFb performed the best for 2, 4, 6, and 8 fractions with an increased MS2 triggering rate of 15.0-36.6% over GPF and 6.6-11.7% over sGPFa. For untargeted screening of phase II metabolites and carboxylates, the best performance achieved by sGPFb8 exhibited a 46.9% increase over GPF8 with the increase evenly distributed in glucuronides (54 vs 38), sulfates (55 vs 41), and carboxylates (31 vs 16). Such superiority of sGPF over GPF is mainly due to the reduced number of concurrent precursor ions and increased relative ion intensity ranks.
质谱仪固有的 MS2 速率限制仍然限制了靶向代谢组学的数据依赖采集 (DDA) 的性能。在处理复杂的代谢组海洋时,基于 top-n 的 DDA 只是触及了表面,因为只有一小部分离子可以被选择进行 MS2。在这里,我们报告了一种使用气相分段和交错质量范围 (sGPF) 的靶向代谢组学的改进 DDA 方法。与传统 GPF 的单个 m/z 段不同,sGPF 的 m/z 段更窄、更复杂、更离散,可以在低、中、高 m/z 范围内更均匀地选择前体离子。这是通过预先定义包含多个不连续 m/z 范围的包含列表间接实现的。比较了五个分馏水平 (2、4、6、8 和 10) 和两种交错策略 (交错宽和窄子片段 (sGPFa 和 sGPFb)),以表征人尿代谢物。对于靶向和非靶向比较,sGPFb8 获得了最高的 MS2 覆盖率。60 种代谢物的靶向比较表明,sGPFb 在 2、4、6 和 8 个馏分中的性能最佳,MS2 触发率比 GPF 提高了 15.0-36.6%,比 sGPFa 提高了 6.6-11.7%。对于 II 相代谢物和羧酸的非靶向筛选,sGPFb8 达到的最佳性能比 GPF8 提高了 46.9%,增加均匀分布在葡萄糖醛酸苷 (54 比 38)、硫酸盐 (55 比 41) 和羧酸 (31 比 16)。sGPF 优于 GPF 的主要原因是并发前体离子的数量减少和相对离子强度等级增加。