Kurata Hiroyuki, Sugimoto Yurie
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
J Biosci Bioeng. 2018 Feb;125(2):251-257. doi: 10.1016/j.jbiosc.2017.09.005. Epub 2017 Oct 18.
Many kinetic models of Escherichia coli central metabolism have been built, but few models accurately reproduced the dynamic behaviors of wild type and multiple genetic mutants. In 2016, our latest kinetic model improved problems of existing models to reproduce the cell growth and glucose uptake of wild type, ΔpykA:pykF and Δpgi in a batch culture, while it overestimated the glucose uptake and cell growth rates of Δppc and hardly captured the typical characteristics of the glyoxylate and TCA cycle fluxes for Δpgi and Δppc. Such discrepancies between the simulated and experimental data suggested biological complexity. In this study, we overcame these problems by assuming critical mechanisms regarding the OAA-regulated isocitrate dehydrogenase activity, aceBAK gene regulation and growth suppression. The present model accurately predicts the extracellular and intracellular dynamics of wild type and many gene knockout mutants in batch and continuous cultures. It is now the most accurate, detailed kinetic model of E. coli central carbon metabolism and will contribute to advances in mathematical modeling of cell factories.
已经构建了许多大肠杆菌中心代谢的动力学模型,但很少有模型能准确再现野生型和多个基因敲除突变体的动态行为。2016年,我们最新的动力学模型改进了现有模型的问题,以再现分批培养中野生型、ΔpykA:pykF和Δpgi的细胞生长和葡萄糖摄取情况,然而它高估了Δppc的葡萄糖摄取和细胞生长速率,并且几乎无法捕捉Δpgi和Δppc的乙醛酸循环和三羧酸循环通量的典型特征。模拟数据与实验数据之间的这种差异表明了生物学的复杂性。在本研究中,我们通过假设关于草酰乙酸调节异柠檬酸脱氢酶活性、aceBAK基因调控和生长抑制的关键机制克服了这些问题。当前模型准确预测了分批培养和连续培养中野生型和许多基因敲除突变体的细胞外和细胞内动态。它现在是大肠杆菌中心碳代谢最准确、最详细的动力学模型,并将有助于细胞工厂数学建模的进展。