Matsuoka Yu, Kurata Hiroyuki
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Japan.
Biomedical Informatics R&D Center, Kyushu Institute of Technology, Iizuka, Japan.
Front Bioeng Biotechnol. 2020 Apr 7;8:277. doi: 10.3389/fbioe.2020.00277. eCollection 2020.
Lignocellulosic biomass can be hydrolyzed into two major sugars of glucose and xylose, and thus the strategy for the efficient consumption of both sugars is highly desirable. NADPH is the essential molecule for the production of industrially important value-added chemicals, and thus its availability is quite important. mutant lacking the gene encoding phosphoglucose isomerase (Pgi) has been preferentially used to overproduce the NADPH. However, there exists a disadvantage that the cell growth rate becomes low for the mutant grown on glucose. This limits the efficient NADPH production, and therefore, it is quite important to investigate how addition of different carbon source such as xylose (other than glucose) effectively improves the NADPH production. In this study, we have developed a kinetic model to propose an efficient NADPH production system using -knockout mutant with a mixture of glucose and xylose. The proposed system adds xylose to glucose medium to recover the suppressed growth of the mutant, and determines the xylose content to maximize the NADPH productivity. Finally, we have designed a mevalonate (MVA) production system by implementing ArcA overexpression into the -knockout mutant using a mixture of glucose and xylose. In addition to NADPH overproduction, the accumulation of acetyl-CoA (AcCoA) is necessary for the efficient MVA production. In the present study, therefore, we considered to overexpress ArcA, where ArcA overexpression suppresses the TCA cycle, causing the overflow of AcCoA, a precursor of MVA. We predicted the xylose content that maximizes the MVA production. This approach demonstrates the possibility of a great progress in the computer-aided rational design of the microbial cell factories for useful metabolite production.
木质纤维素生物质可水解为葡萄糖和木糖这两种主要糖类,因此高效利用这两种糖类的策略备受期待。烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是生产具有重要工业价值的增值化学品所必需的分子,因此其可用性非常重要。缺乏编码磷酸葡萄糖异构酶(Pgi)基因的突变体已被优先用于过量生产NADPH。然而,存在一个缺点,即在葡萄糖上生长的突变体细胞生长速率变低。这限制了NADPH的高效生产,因此,研究添加不同碳源(如木糖(而非葡萄糖))如何有效提高NADPH产量非常重要。在本研究中,我们开发了一个动力学模型,以提出一种使用葡萄糖和木糖混合物的基因敲除突变体高效生产NADPH的系统。所提出的系统向葡萄糖培养基中添加木糖以恢复突变体受抑制的生长,并确定木糖含量以最大化NADPH生产力。最后,我们通过在使用葡萄糖和木糖混合物的基因敲除突变体中过表达ArcA,设计了一个甲羟戊酸(MVA)生产系统。除了过量生产NADPH外,乙酰辅酶A(AcCoA)的积累对于高效生产MVA也是必要的。因此,在本研究中,我们考虑过表达ArcA,其中ArcA过表达抑制三羧酸循环,导致MVA前体AcCoA溢流。我们预测了使MVA产量最大化的木糖含量。这种方法证明了在用于有用代谢物生产的微生物细胞工厂的计算机辅助合理设计方面取得巨大进展的可能性。