Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
Redox Biol. 2018 Apr;14:398-408. doi: 10.1016/j.redox.2017.10.004. Epub 2017 Oct 7.
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner.
丧失功能的端粒酶(DKC1)、NOP10 和 TIN2 是先天性角化不良(DC;ORPHA1775)不同遗传模式的原因。它们是端粒酶(DKC1 和 NOP10)和庇护素(TIN2)的关键组成部分,在端粒稳态中发挥重要作用。它们通过尚未完全了解的机制通过导致先天性角化不良参与几个基本的细胞过程。据推测,氧化应激的存在是由于端粒酶缺失引起的。然而,由此产生的失衡的氧化还原状态可以通过产生恶性循环来促进端粒磨损,从而促进细胞衰老。这一事实促使我们研究急性缺失 DKC1、NOP10 和 TINF2 是否可以促进氧化还原失衡作为端粒缩短尚未发生的早期事件。我们通过 RNA 干扰生成了 siRNA 介导的(DKC1、NOP10 和 TINF2)细胞系,通过 mRNA 和蛋白质表达分析进行了确认。在任何沉默的细胞系中都没有发生端粒缩短。H/ACA 核糖核蛋白 DKC1 和 NOP10 的耗竭通过 TERC 下调降低了端粒酶活性,并导致假尿嘧啶化和核糖体生物发生的改变。观察到 GSSG/GSH 比、羰基化蛋白和氧化过氧化物酶-6 的增加,以及 siRNA DC 细胞中 MnSOD 和 TRX1 的过表达。同样,检测到高水平的 PAR 化和高水平的 PARP1 蛋白表达。相比之下,沉默的 TINF2 细胞没有改变任何评估的氧化应激标志物。总之,这些发现使我们得出结论,DKC1 和 NOP10 功能的丧失以不依赖于端粒缩短的方式诱导氧化应激。