Suppr超能文献

卵巢干细胞巢在生殖与卵巢衰老中的作用

Ovarian Stem Cell Nests in Reproduction and Ovarian Aging.

作者信息

Ye Haifeng, Zheng Tuochen, Li Wei, Li Xiaoyan, Fu Xinxin, Huang Yaoqi, Hu Chuan, Li Jia, Huang Jian, Liu Zhengyv, Zheng Liping, Zheng Yuehui

机构信息

Jiangxi Medical College, Nanchang University, Nanchang, China.

The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang, China.

出版信息

Cell Physiol Biochem. 2017;43(5):1917-1925. doi: 10.1159/000484114. Epub 2017 Oct 20.

Abstract

The fixed primordial follicles pool theory, which monopolized reproductive medicine for more than one hundred years, has been broken by the discovery, successful isolation and establishment of ovarian stem cells. It has brought more hope than ever of increasing the size of primordial follicle pool, improving ovarian function and delaying ovarian consenescence. Traditional view holds that stem cell aging contributes to the senility of body and organs. However, in the process of ovarian aging, the main factor leading to the decline of the reproductive function is the aging and degradation of ovarian stem cell nests, rather than the senescence of ovarian germ cells themselves. Recent studies have found that the immune system and circulatory system are involved in the formation of ovarian germline stem cell niches, as well as regulating the proliferation and differentiation of ovarian germline stem cells through cellular and hormonal signals. Therefore, we can improve ovarian function and delay ovarian aging by improving the immune system and circulatory system, which will provide an updated program for the treatment of premature ovarian failure (POF) and infertility.

摘要

固定原始卵泡池理论在生殖医学领域占据主导地位长达一百多年,如今卵巢干细胞的发现、成功分离及建立已将其打破。这为增大原始卵泡池规模、改善卵巢功能以及延缓卵巢衰老带来了前所未有的希望。传统观点认为干细胞衰老导致身体和器官衰老。然而,在卵巢衰老过程中,导致生殖功能下降的主要因素是卵巢干细胞巢的衰老和退化,而非卵巢生殖细胞自身的衰老。最近的研究发现,免疫系统和循环系统参与卵巢生殖系干细胞龛的形成,并通过细胞和激素信号调节卵巢生殖系干细胞的增殖和分化。因此,我们可以通过改善免疫系统和循环系统来改善卵巢功能并延缓卵巢衰老,这将为治疗卵巢早衰(POF)和不孕症提供新的方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验