Beams Ryan, Woodcock Jeremiah W, Gilman Jeffrey W, Stranick Stephan J
Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MD, 20899.
Photonics. 2017;4(3):39. doi: 10.3390/photonics4030039. Epub 2017 Jul 6.
We demonstrate a multimodal superresolution microscopy technique based on a phase masked excitation beam in combination with spatially filtered detection. The theoretical foundation for calculating the focus from a non-paraxial beam with an arbitrary azimuthally symmetric phase mask is presented for linear and two-photon excitation processes as well as the theoretical resolution limitations. Experimentally this technique is demonstrated using two-photon luminescence from 80 nm gold particle as well as two-photon fluorescence lifetime imaging of fluorescent polystyrene beads. Finally to illustrate the versatility of this technique we acquire two-photon fluorescence lifetime, two-photon luminescence, and second harmonic images of a mixture of fluorescent molecules and 80 nm gold particles with > 120 nm resolution (/7). Since this approach exclusively relies on engineering the excitation and collection volumes, it is suitable for a wide range of scanning-based microscopies.