Suppr超能文献

基于脉冲 STED 双光子激发显微镜的活细胞超分辨率成像。

Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.

机构信息

Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Biophys J. 2013 Feb 19;104(4):770-7. doi: 10.1016/j.bpj.2012.12.053.

Abstract

Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. Here, we describe the design and operation of a superresolution two-photon microscope using pulsed excitation and STED lasers. We examine the depth dependence of STED imaging in acute tissue slices and find enhancement of 2P resolution ranging from approximately fivefold at 20 μm to approximately twofold at 90-μm deep. The depth dependence of resolution is found to be consistent with the depth dependence of depletion efficiency, suggesting resolution is limited by STED laser propagation through turbid tissue. Finally, we achieve live imaging of dendritic spines with 60-nm resolution and demonstrate that our technique allows accurate quantification of neuronal morphology up to 30-μm deep in living brain tissue.

摘要

双光子激光扫描显微镜(2PLSM)允许在厚生物样品中进行荧光成像,在这些样品中,吸收和散射通常会降低单光子成像方法的分辨率和信号采集。传统 2PLSM 的空间分辨率受到衍射的限制,而用于 2PLSM 激发的近红外波长则排除了对神经元许多小亚细胞区室的精确成像。受激发射损耗(STED)显微镜是一种超分辨率成像模式,它克服了衍射施加的分辨率限制,并允许对纳米级特征进行荧光成像。在这里,我们描述了使用脉冲激发和 STED 激光器的超分辨率双光子显微镜的设计和操作。我们研究了在急性组织切片中 STED 成像的深度依赖性,发现 STED 分辨率增强范围从 20μm 处的约五倍到 90-μm 深处的约两倍。分辨率的深度依赖性与耗尽效率的深度依赖性一致,这表明分辨率受到混浊组织中 STED 激光传播的限制。最后,我们实现了具有 60nm 分辨率的树突棘的活细胞成像,并证明我们的技术允许在活体脑组织中对神经元形态进行准确的定量,深度可达 30μm 深。

相似文献

1
Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy.
Biophys J. 2013 Feb 19;104(4):770-7. doi: 10.1016/j.bpj.2012.12.053.
3
Two-photon excitation STED microscopy in two colors in acute brain slices.
Biophys J. 2013 Feb 19;104(4):778-85. doi: 10.1016/j.bpj.2012.12.054.
4
Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo.
Methods Mol Biol. 2017;1663:45-64. doi: 10.1007/978-1-4939-7265-4_5.
5
Super-resolution STED microscopy in live brain tissue.
Neurobiol Dis. 2021 Aug;156:105420. doi: 10.1016/j.nbd.2021.105420. Epub 2021 Jun 5.
6
STED microscopy for nanoscale imaging in living brain slices.
Methods. 2015 Oct 15;88:57-66. doi: 10.1016/j.ymeth.2015.06.006. Epub 2015 Jun 9.
7
Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy.
J Biophotonics. 2018 Mar;11(3). doi: 10.1002/jbio.201700171. Epub 2017 Nov 9.
8
In Vivo Superresolution Imaging of Neuronal Structure in the Mouse Brain.
IEEE Trans Biomed Eng. 2018 Jan;65(1):232-238. doi: 10.1109/TBME.2017.2773540.
9
Live-cell imaging of dendritic spines by STED microscopy.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18982-7. doi: 10.1073/pnas.0810028105. Epub 2008 Nov 21.
10
Two-color STED microscopy of living synapses using a single laser-beam pair.
Biophys J. 2011 Nov 16;101(10):2545-52. doi: 10.1016/j.bpj.2011.10.011. Epub 2011 Nov 15.

引用本文的文献

1
Contribution of individual excitatory synapses on dendritic spines to electrical signaling.
Front Neurosci. 2025 Jul 29;19:1620654. doi: 10.3389/fnins.2025.1620654. eCollection 2025.
3
Three-Dimensional Microfluidic Capillary Device for Rapid and Multiplexed Immunoassays in Whole Blood.
ACS Sens. 2024 May 24;9(5):2455-2464. doi: 10.1021/acssensors.4c00153. Epub 2024 Apr 30.
4
A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices.
STAR Protoc. 2023 Dec 15;4(4):102707. doi: 10.1016/j.xpro.2023.102707. Epub 2023 Nov 9.
6
Improving two-photon excitation microscopy for sharper and faster biological imaging.
Biophys Physicobiol. 2023 Feb 8;20(1):e200009. doi: 10.2142/biophysico.bppb-v20.0009. eCollection 2023.
7
[Frontiers and development in live-cell super-resolution fluorescence microscopy].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):180-184. doi: 10.7507/1001-5515.202210060.
8
Commercially derived versatile optical architecture for two-photon STED, wavelength mixing and label-free microscopy.
Biomed Opt Express. 2022 Feb 14;13(3):1410-1429. doi: 10.1364/BOE.444525. eCollection 2022 Mar 1.
9
3D super-resolution deep-tissue imaging in living mice.
Optica. 2021 Mar 25;8(4):442-450. doi: 10.1364/OPTICA.416841. eCollection 2021 Apr 20.
10
Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue.
Neurophotonics. 2021 Jul;8(3):035001. doi: 10.1117/1.NPh.8.3.035001. Epub 2021 Jun 14.

本文引用的文献

1
Diffusion laws in dendritic spines.
J Math Neurosci. 2011 Oct 27;1(1):10. doi: 10.1186/2190-8567-1-10.
2
Nanoscopy in a living mouse brain.
Science. 2012 Feb 3;335(6068):551. doi: 10.1126/science.1215369.
3
Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue.
Opt Express. 2011 Nov 7;19(23):22755-74. doi: 10.1364/OE.19.022755.
4
STED nanoscopy of actin dynamics in synapses deep inside living brain slices.
Biophys J. 2011 Sep 7;101(5):1277-84. doi: 10.1016/j.bpj.2011.07.027.
5
Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe.
PLoS One. 2011 Jan 17;6(1):e15611. doi: 10.1371/journal.pone.0015611.
8
Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
Nat Methods. 2010 Feb;7(2):141-7. doi: 10.1038/nmeth.1411. Epub 2009 Dec 27.
9
Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging.
Biophys J. 2009 Dec 16;97(12):3224-8. doi: 10.1016/j.bpj.2009.09.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验