Suppr超能文献

在体超分辨成像小鼠大脑中的神经元结构。

In Vivo Superresolution Imaging of Neuronal Structure in the Mouse Brain.

出版信息

IEEE Trans Biomed Eng. 2018 Jan;65(1):232-238. doi: 10.1109/TBME.2017.2773540.

Abstract

OBJECTIVE

this study proposes and evaluates a technique for in vivo deep-tissue superresolution imaging in the light-scattering mouse brain at up to a 3.5 Hz 2-D imaging rate with a 21×21 μm field of view.

METHODS

we combine the deep-tissue penetration and high imaging speed of resonant laser scanning two-photon (2P) microscopy with the superresolution ability of patterned excitation microscopy. Using high-frequency intensity modulation of the scanned two-photon excitation beam, we generate patterned illumination at the imaging plane. Using the principles of structured illumination, the high-frequency components in the collected images are then used to reconstruct images with an approximate twofold increase in optical resolution.

RESULTS

using our technique, resonant 2P superresolution patterned excitation reconstruction microscopy, we demonstrate our ability to investigate nanoscopic neuronal architecture in the cerebral cortex of the mouse brain at a depth of 120 μm in vivo and 210 μm ex vivo with a resolution of 119 nm. This technique optimizes the combination of speed and depth for improved in vivo imaging in the rodent neocortex.

CONCLUSION

this study demonstrates a potentially useful technique for superresolution in vivo investigations in the rodent brain in deep tissue, creating a platform for investigating nanoscopic neuronal dynamics.

SIGNIFICANCE

this technique optimizes the combination of speed and depth for improved superresolution in vivo imaging in the rodent neocortex.

摘要

目的

本研究提出并评估了一种在光散射鼠脑内进行活体深层组织超分辨率成像的技术,该技术可在 21×21μm 的视场范围内以 3.5Hz 的 2D 成像速率进行,具有深度组织穿透性和高成像速度的共振激光扫描双光子(2P)显微镜,并结合超分辨率能力的图案激发显微镜。通过扫描双光子激发光束的高频强度调制,我们在成像平面上产生图案化照明。利用结构照明的原理,然后使用采集图像中的高频分量来重建图像,从而将光学分辨率提高约两倍。

结果

使用我们的技术,即共振 2P 超分辨率图案激发重建显微镜,我们证明了我们有能力在体内 120μm 和离体 210μm 的深度调查小鼠大脑皮层中的纳米级神经元结构,分辨率为 119nm。该技术优化了速度和深度的组合,以提高在啮齿动物新皮层中的体内成像。

结论

本研究证明了一种在深部组织中进行活体超分辨率研究的潜在有用技术,为研究纳米级神经元动力学创造了一个平台。

意义

该技术优化了速度和深度的组合,以提高在啮齿动物新皮层中的活体超分辨率成像。

相似文献

6
Improved deep two-photon calcium imaging in vivo.体内深度双光子钙成像的改进
Cell Calcium. 2017 Jun;64:29-35. doi: 10.1016/j.ceca.2016.12.005. Epub 2016 Dec 21.

本文引用的文献

1
Super-resolution two-photon microscopy via scanning patterned illumination.通过扫描图案照明实现超分辨率双光子显微镜。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042703. doi: 10.1103/PhysRevE.91.042703. Epub 2015 Apr 7.
6
Activity-dependent dendritic spine neck changes are correlated with synaptic strength.活性依赖的树突棘颈变化与突触强度相关。
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2895-904. doi: 10.1073/pnas.1321869111. Epub 2014 Jun 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验