IEEE Trans Biomed Eng. 2018 Jan;65(1):232-238. doi: 10.1109/TBME.2017.2773540.
this study proposes and evaluates a technique for in vivo deep-tissue superresolution imaging in the light-scattering mouse brain at up to a 3.5 Hz 2-D imaging rate with a 21×21 μm field of view.
we combine the deep-tissue penetration and high imaging speed of resonant laser scanning two-photon (2P) microscopy with the superresolution ability of patterned excitation microscopy. Using high-frequency intensity modulation of the scanned two-photon excitation beam, we generate patterned illumination at the imaging plane. Using the principles of structured illumination, the high-frequency components in the collected images are then used to reconstruct images with an approximate twofold increase in optical resolution.
using our technique, resonant 2P superresolution patterned excitation reconstruction microscopy, we demonstrate our ability to investigate nanoscopic neuronal architecture in the cerebral cortex of the mouse brain at a depth of 120 μm in vivo and 210 μm ex vivo with a resolution of 119 nm. This technique optimizes the combination of speed and depth for improved in vivo imaging in the rodent neocortex.
this study demonstrates a potentially useful technique for superresolution in vivo investigations in the rodent brain in deep tissue, creating a platform for investigating nanoscopic neuronal dynamics.
this technique optimizes the combination of speed and depth for improved superresolution in vivo imaging in the rodent neocortex.
本研究提出并评估了一种在光散射鼠脑内进行活体深层组织超分辨率成像的技术,该技术可在 21×21μm 的视场范围内以 3.5Hz 的 2D 成像速率进行,具有深度组织穿透性和高成像速度的共振激光扫描双光子(2P)显微镜,并结合超分辨率能力的图案激发显微镜。通过扫描双光子激发光束的高频强度调制,我们在成像平面上产生图案化照明。利用结构照明的原理,然后使用采集图像中的高频分量来重建图像,从而将光学分辨率提高约两倍。
使用我们的技术,即共振 2P 超分辨率图案激发重建显微镜,我们证明了我们有能力在体内 120μm 和离体 210μm 的深度调查小鼠大脑皮层中的纳米级神经元结构,分辨率为 119nm。该技术优化了速度和深度的组合,以提高在啮齿动物新皮层中的体内成像。
本研究证明了一种在深部组织中进行活体超分辨率研究的潜在有用技术,为研究纳米级神经元动力学创造了一个平台。
该技术优化了速度和深度的组合,以提高在啮齿动物新皮层中的活体超分辨率成像。