Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Department of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.
Angew Chem Int Ed Engl. 2017 Dec 11;56(50):16057-16062. doi: 10.1002/anie.201709886. Epub 2017 Nov 21.
Non-aqueous Li-O batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li O , have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e oxygen reduction reaction, the H in LiOH coming solely from added H O and the O from both O and H O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li O , LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.
非水相 Li-O 电池有望成为下一代储能技术。最近有报道称,在添加水的体系中,基于 LiOH 而不是 Li O 的新型电池化学物质得到了应用,其中一种使用可溶性添加剂 LiI,另一种则使用固体 Ru 催化剂。本文重点研究了 Ru 催化 LiOH 化学的机理。通过核磁共振、原位电化学压力测量和质谱分析,结果表明在放电过程中,LiOH 通过 4e 氧还原反应形成,LiOH 中的 H 仅来自外加的 H O,而 O 则来自 O 和 H O。在充电过程中,定量的 LiOH 在 3.1V 下发生氧化,O 以二甲亚砜的形式在电解质中被捕获。与 Li O 相比,Ru 上 LiOH 的形成引发的副反应较少,这对于开发长寿命电池是一个关键优势。需要寻找一种优化的金属催化剂-电解质偶联物,以促进 LiOH 的氧化,并能耐受羟基自由基的攻击。