Suppr超能文献

按需双层石墨烯中哪一层可调谐的自旋轨道相互作用。

On-Demand Spin-Orbit Interaction from Which-Layer Tunability in Bilayer Graphene.

机构信息

Department of Physics, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Department of Quantum Matter Physics (DQMP) and Group of Applied Physics (GAP), University of Geneva , 24 Quai Ernest-Ansermet, CH1211 Geneva 4, Switzerland.

出版信息

Nano Lett. 2017 Nov 8;17(11):7003-7008. doi: 10.1021/acs.nanolett.7b03604. Epub 2017 Oct 23.

Abstract

Spin-orbit interaction (SOI) that is gate-tunable over a broad range is essential to exploiting novel spin phenomena. Achieving this regime has remained elusive because of the weakness of the underlying relativistic coupling and lack of its tunability in solids. Here we outline a general strategy that enables exceptionally high tunability of SOI through creating a which-layer spin-orbit field inhomogeneity in graphene multilayers. An external transverse electric field is applied to shift carriers between the layers with strong and weak SOI. Because graphene layers are separated by subnanometer scales, exceptionally high tunability of SOI can be achieved through a minute carrier displacement. A detailed analysis of the experimentally relevant case of bilayer graphene on a semiconducting transition metal dichalchogenide substrate is presented. In this system, a complete tunability of SOI amounting to its ON/OFF switching can be achieved. New opportunities for spin control are exemplified with electrically driven spin resonance and topological phases with different quantized intrinsic valley Hall conductivities.

摘要

自旋轨道相互作用(SOI)在很宽的范围内是可门控的,对于利用新的自旋现象至关重要。由于基础相对论耦合的强度很弱,并且在固体中缺乏可调谐性,因此实现这一目标仍然难以捉摸。在这里,我们概述了一种通用策略,通过在多层石墨烯中创建各层自旋轨道场非均匀性,可以实现 SOI 的极高可调谐性。施加一个横向电场,使载流子在具有强和弱 SOI 的层之间移动。由于石墨烯层之间的分离尺度小于纳米,因此通过微小的载流子位移可以实现 SOI 的极高可调谐性。提出了对基于半导体过渡金属二卤化物衬底的双层石墨烯的实验相关情况的详细分析。在这个系统中,可以实现 SOI 的完全可调谐,相当于其开/关切换。通过电驱动自旋共振和具有不同量化本征谷霍尔电导率的拓扑相,展示了新的自旋控制机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验