Jarrahi Behnaz, Martucci Katherine T, Nilakantan Aneesha S, Mackey Sean
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:497-500. doi: 10.1109/EMBC.2017.8036870.
Recent advances in multivariate statistical analysis of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) have provided novel insights into the network organization of the human brain. Here, we applied group independent component analysis, a well-established approach for detecting brain intrinsic connectivity networks, to examine the spontaneous BOLD fluctuations in patients with fibromyalgia and healthy controls before and after exposure to a stressor. The BOLD spectral power characteristics of component time courses were calculated using the fast Fourier transform (FFT) algorithm, and group comparison was performed at six frequency bins between 0 and 0.24 Hz at 0.04 Hz intervals. Relative to controls, patients with fibromyalgia displayed significant BOLD spectral power differences in the default-mode, salience, and subcortical networks at the baseline level (P <; 0.05). Multivariate analysis of covariance (MANCOVA) further revealed significant effects of the cold water temperature, and pain rating on the spectral power of the sensorimotor, salience, and prefrontal networks, while the diagnosis of fibromyalgia influenced the BOLD spectral power of the salience and subcortical networks (P <; 0.05). Since the BOLD spectral power reflects the degree of fluctuations within a network, future studies of the correlation between BOLD spectral power and pain processing can cast additional light on the nature of the central nervous system dysfunction in patients with chronic pain syndromes.
血氧水平依赖(BOLD)功能磁共振成像(fMRI)的多元统计分析方面的最新进展,为人类大脑的网络组织提供了新的见解。在此,我们应用组独立成分分析(一种成熟的检测脑内在连接网络的方法),来检查纤维肌痛患者和健康对照在暴露于应激源之前和之后的自发BOLD波动。使用快速傅里叶变换(FFT)算法计算成分时间历程的BOLD频谱功率特征,并在0至0.24Hz之间以0.04Hz间隔的六个频率区间进行组间比较。与对照组相比,纤维肌痛患者在基线水平时,默认模式、突显和皮质下网络中的BOLD频谱功率存在显著差异(P<0.05)。多变量协方差分析(MANCOVA)进一步揭示了冷水温度和疼痛评分对感觉运动、突显和前额叶网络频谱功率的显著影响,而纤维肌痛的诊断影响了突显和皮质下网络的BOLD频谱功率(P<0.05)。由于BOLD频谱功率反映了网络内波动的程度,未来关于BOLD频谱功率与疼痛处理之间相关性的研究,可以进一步阐明慢性疼痛综合征患者中枢神经系统功能障碍的本质。