Suppr超能文献

探究纤维肌痛患者内在连接网络的血氧水平依赖性功能磁共振光谱功率:一项静息态功能磁共振成像研究。

Investigating the BOLD spectral power of the intrinsic connectivity networks in fibromyalgia patients: A resting-state fMRI study.

作者信息

Jarrahi Behnaz, Martucci Katherine T, Nilakantan Aneesha S, Mackey Sean

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:497-500. doi: 10.1109/EMBC.2017.8036870.

Abstract

Recent advances in multivariate statistical analysis of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) have provided novel insights into the network organization of the human brain. Here, we applied group independent component analysis, a well-established approach for detecting brain intrinsic connectivity networks, to examine the spontaneous BOLD fluctuations in patients with fibromyalgia and healthy controls before and after exposure to a stressor. The BOLD spectral power characteristics of component time courses were calculated using the fast Fourier transform (FFT) algorithm, and group comparison was performed at six frequency bins between 0 and 0.24 Hz at 0.04 Hz intervals. Relative to controls, patients with fibromyalgia displayed significant BOLD spectral power differences in the default-mode, salience, and subcortical networks at the baseline level (P <; 0.05). Multivariate analysis of covariance (MANCOVA) further revealed significant effects of the cold water temperature, and pain rating on the spectral power of the sensorimotor, salience, and prefrontal networks, while the diagnosis of fibromyalgia influenced the BOLD spectral power of the salience and subcortical networks (P <; 0.05). Since the BOLD spectral power reflects the degree of fluctuations within a network, future studies of the correlation between BOLD spectral power and pain processing can cast additional light on the nature of the central nervous system dysfunction in patients with chronic pain syndromes.

摘要

血氧水平依赖(BOLD)功能磁共振成像(fMRI)的多元统计分析方面的最新进展,为人类大脑的网络组织提供了新的见解。在此,我们应用组独立成分分析(一种成熟的检测脑内在连接网络的方法),来检查纤维肌痛患者和健康对照在暴露于应激源之前和之后的自发BOLD波动。使用快速傅里叶变换(FFT)算法计算成分时间历程的BOLD频谱功率特征,并在0至0.24Hz之间以0.04Hz间隔的六个频率区间进行组间比较。与对照组相比,纤维肌痛患者在基线水平时,默认模式、突显和皮质下网络中的BOLD频谱功率存在显著差异(P<0.05)。多变量协方差分析(MANCOVA)进一步揭示了冷水温度和疼痛评分对感觉运动、突显和前额叶网络频谱功率的显著影响,而纤维肌痛的诊断影响了突显和皮质下网络的BOLD频谱功率(P<0.05)。由于BOLD频谱功率反映了网络内波动的程度,未来关于BOLD频谱功率与疼痛处理之间相关性的研究,可以进一步阐明慢性疼痛综合征患者中枢神经系统功能障碍的本质。

相似文献

1
Investigating the BOLD spectral power of the intrinsic connectivity networks in fibromyalgia patients: A resting-state fMRI study.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:497-500. doi: 10.1109/EMBC.2017.8036870.
2
Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
Pain. 2013 Sep;154(9):1792-1797. doi: 10.1016/j.pain.2013.05.040. Epub 2013 May 25.
3
Measuring the Influence of Physiological Noise Corrections on ICA Derived Intrinsic Connectivity Brain Networks in Rest and Task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1046-1049. doi: 10.1109/EMBC.2018.8512391.
4
Tracking intrinsic connectivity brain network features during successive (Pseudo-) resting states and interoceptive task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5567-5570. doi: 10.1109/EMBC.2016.7591988.
5
Identifying the effects of visceral interoception on human brain connectome: A multivariate analysis of covariance of fMRI data.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5558-5562. doi: 10.1109/EMBC.2016.7591986.
6
Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
J Neurosci Res. 2018 Oct;96(10):1689-1698. doi: 10.1002/jnr.24257. Epub 2018 May 14.
7
8
Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia.
Neuroimage Clin. 2015 Aug 28;9:484-97. doi: 10.1016/j.nicl.2015.08.012. eCollection 2015.
9
Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
Neuroimage. 2012 May 1;60(4):2062-72. doi: 10.1016/j.neuroimage.2012.02.031. Epub 2012 Feb 22.
10
Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
Neuroimage. 2014 Feb 15;87:403-15. doi: 10.1016/j.neuroimage.2013.09.050. Epub 2013 Sep 29.

本文引用的文献

1
Tracking intrinsic connectivity brain network features during successive (Pseudo-) resting states and interoceptive task fMRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5567-5570. doi: 10.1109/EMBC.2016.7591988.
2
Identifying the effects of visceral interoception on human brain connectome: A multivariate analysis of covariance of fMRI data.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5558-5562. doi: 10.1109/EMBC.2016.7591986.
3
Exploring influence of subliminal interoception on whole-brain functional network connectivity dynamics.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:670-4. doi: 10.1109/EMBC.2015.7318451.
5
Worldwide epidemiology of fibromyalgia.
Curr Pain Headache Rep. 2013 Aug;17(8):356. doi: 10.1007/s11916-013-0356-5.
6
Behavioral interpretations of intrinsic connectivity networks.
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.
7
A baseline for the multivariate comparison of resting-state networks.
Front Syst Neurosci. 2011 Feb 4;5:2. doi: 10.3389/fnsys.2011.00002. eCollection 2011.
9
Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls.
Eur J Pain. 2008 Nov;12(8):1078-89. doi: 10.1016/j.ejpain.2008.02.002. Epub 2008 Mar 25.
10
Dissociable intrinsic connectivity networks for salience processing and executive control.
J Neurosci. 2007 Feb 28;27(9):2349-56. doi: 10.1523/JNEUROSCI.5587-06.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验