Suppr超能文献

静息态网络的多元比较基准。

A baseline for the multivariate comparison of resting-state networks.

机构信息

The Mind Research Network Albuquerque, NM, USA.

出版信息

Front Syst Neurosci. 2011 Feb 4;5:2. doi: 10.3389/fnsys.2011.00002. eCollection 2011.

Abstract

As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.

摘要

随着功能和结构磁共振成像数据集的规模不断扩大,确定可用于确定诊断相关性的基线、用于高效准备数据分析的处理策略以及能够以稳健且可重复的方式识别重要效应的统计方法变得越来越重要。在本文中,我们介绍了一种优化敏感性和减少不必要测试的多元分析方法。我们通过确定年龄和性别对 603 名健康青少年和成年人(平均年龄:23.4 岁,范围:12-71 岁)静息状态网络(RSN)的影响,展示了这种 mega 分析方法的实用性。数据是在同一台扫描仪上收集的,使用基于 SPM 的自动分析管道进行预处理,并使用组独立成分分析进行研究。RSN 是根据三个主要的结果测量来确定和评估的:时程谱功率、空间图强度和功能网络连通性。结果显示年龄对所有三个结果测量都有显著影响,主要表现为随着年龄的增长,网络的相干性和连通性降低。性别效应的幅度较小,但表明女性的内联网连接性更强,男性的内联网连接性更强,尤其是在感觉运动网络方面。这些发现以及这里描述的分析方法和统计框架为未来健康和疾病中的大脑网络研究提供了有用的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2995/3051178/c06301e09f69/fnsys-05-00002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验