Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:676-680. doi: 10.1109/EMBC.2017.8036915.
Tessellation in fundus is not only a visible feature for aged-related and myopic maculopathy but also confuse retinal vessel segmentation. The detection of tessellated images is an inevitable processing in retinal image analysis. In this work, we propose a model using convolutional neural network for detecting tessellated images. The input to the model is pre-processed fundus image, and the output indicate whether this photograph has tessellation or not. A database with 12,000 colour retinal images is collected to evaluate the classification performance. The best tessellation classifier achieves accuracy of 97.73% and AUC value of 0.9659 using pretrained GoogLeNet and transfer learning technique.
眼底的镶嵌现象不仅是年龄相关性和近视性黄斑病变的一个可见特征,还会干扰视网膜血管分割。镶嵌图像的检测是视网膜图像分析中不可避免的过程。在这项工作中,我们提出了一种使用卷积神经网络来检测镶嵌图像的模型。该模型的输入是经过预处理的眼底图像,输出表明该照片是否存在镶嵌现象。我们收集了一个包含12000张彩色视网膜图像的数据库来评估分类性能。使用预训练的谷歌网络和迁移学习技术,最佳的镶嵌分类器实现了97.73%的准确率和0.9659的AUC值。