Suppr超能文献

用于视网膜图像分类的多分类深度学习神经网络:一项使用小型数据库的初步研究。

Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database.

作者信息

Choi Joon Yul, Yoo Tae Keun, Seo Jeong Gi, Kwak Jiyong, Um Terry Taewoong, Rim Tyler Hyungtaek

机构信息

Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.

Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea.

出版信息

PLoS One. 2017 Nov 2;12(11):e0187336. doi: 10.1371/journal.pone.0187336. eCollection 2017.

Abstract

Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.

摘要

深度学习成为分析医学图像的强大工具。利用眼底图像的计算机辅助诊断进行视网膜疾病检测已成为一种新方法。我们使用MatConvNet应用深度学习卷积神经网络,对视网膜结构分析(STARE)数据库中的眼底照片进行多种视网膜疾病的自动检测。通过扩展10个类别的数据构建数据集,包括正常视网膜和9种视网膜疾病。基于VGG - 19架构使用随机森林迁移学习获得了最佳结果。分类结果在很大程度上取决于类别数量。随着类别数量增加,深度学习模型的性能会下降。当包含所有10个类别时,我们得到的结果准确率为30.5%,相对分类器信息(RCI)为0.052,科恩kappa系数为0.224。考虑正常、背景性糖尿病视网膜病变和干性年龄相关性黄斑变性这三个综合类别,多类别分类器的准确率为72.8%,RCI为0.283,kappa系数为0.577。此外,几个集成分类器提高了多类别分类性能。在10种视网膜疾病分类问题中,结合聚类和投票方法的集成分类器的迁移学习表现最佳,准确率为36.7%,RCI为0.053,kappa系数为0.225。首先,由于数据集规模较小,本研究中的深度学习技术在众多患有各种视网膜疾病的患者前来诊断和治疗的临床环境中应用效果不佳。其次,我们发现结合集成分类器的迁移学习可以提高分类性能,以检测多类别视网膜疾病。进一步的研究应证实从医院获得的大数据集算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99de/5667846/9b7804b32762/pone.0187336.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验