Machireddy Archana, van Santen Jan, Wilson Jenny L, Myers Julianne, Hadders-Algra Mijna
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:730-733. doi: 10.1109/EMBC.2017.8036928.
Cerebral palsy is a non-progressive neurological disorder occurring in early childhood affecting body movement and muscle control. Early identification can help improve outcome through therapy-based interventions. Absence of so-called "fidgety movements" is a strong predictor of cerebral palsy. Currently, infant limb movements captured through either video cameras or accelerometers are analyzed to identify fidgety movements. However both modalities have their limitations. Video cameras do not have the high temporal resolution needed to capture subtle movements. Accelerometers have low spatial resolution and capture only relative movement. In order to overcome these limitations, we have developed a system to combine measurements from both camera and sensors to estimate the true underlying motion using extended Kalman filter. The estimated motion achieved 84% classification accuracy in identifying fidgety movements using Support Vector Machine.
脑瘫是一种发生在儿童早期的非进行性神经障碍,会影响身体运动和肌肉控制。早期识别有助于通过基于治疗的干预措施改善预后。所谓“易激惹运动”的缺失是脑瘫的一个强有力的预测指标。目前,通过摄像机或加速度计捕捉到的婴儿肢体运动被用于分析以识别易激惹运动。然而,这两种方式都有其局限性。摄像机没有捕捉细微运动所需的高时间分辨率。加速度计的空间分辨率低,只能捕捉相对运动。为了克服这些局限性,我们开发了一个系统,将来自摄像机和传感器的测量结果相结合,使用扩展卡尔曼滤波器来估计真实的潜在运动。使用支持向量机,估计的运动在识别易激惹运动方面达到了84%的分类准确率。