Suppr超能文献

利用生物启发特征对儿科患者喉炎进行咳嗽声音分析以进行诊断。

Cough sound analysis for diagnosing croup in pediatric patients using biologically inspired features.

作者信息

Sharan Roneel V, Abeyratne Udantha R, Swarnkar Vinayak R, Porter Paul

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4578-4581. doi: 10.1109/EMBC.2017.8037875.

Abstract

This paper aims to diagnose croup in children using cough sound signal classification. It proposes the use of a time-frequency image-based feature, referred as the cochleagram image feature (CIF). Unlike the conventional spectrogram image, the cochleagram utilizes a gammatone filter which models the frequency selectivity property of the human cochlea. This helps reveal more spectral information in the time-frequency image making it more useful for feature extraction. The cochleagram image is then divided into blocks and central moments are extracted as features. Classification is performed using logistic regression model (LRM) and support vector machine (SVM) on a comprehensive real-world cough sound signal database containing 364 patients with various clinically diagnosed respiratory tract infections divided into croup and non-croup. The best results, sensitivity of 88.37% and specificity of 91.59%, are achieved using SVM classification on a combined feature set of CIF and the conventional mel-frequency cepstral coefficients (MFCCs).

摘要

本文旨在通过咳嗽声信号分类来诊断儿童哮吼。它提出使用一种基于时频图像的特征,称为耳蜗图图像特征(CIF)。与传统的频谱图图像不同,耳蜗图利用了伽马通滤波器,该滤波器对人类耳蜗的频率选择性特性进行建模。这有助于在时频图像中揭示更多频谱信息,使其对特征提取更有用。然后将耳蜗图图像划分为块,并提取中心矩作为特征。在一个包含364名患有各种临床诊断的呼吸道感染(分为哮吼和非哮吼)患者的综合真实世界咳嗽声信号数据库上,使用逻辑回归模型(LRM)和支持向量机(SVM)进行分类。使用SVM对CIF和传统的梅尔频率倒谱系数(MFCCs)的组合特征集进行分类,可获得最佳结果,灵敏度为88.37%,特异性为91.59%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验