Suppr超能文献

使用音频分析和人工智能诊断呼吸疾病:系统评价。

Respiratory Diseases Diagnosis Using Audio Analysis and Artificial Intelligence: A Systematic Review.

机构信息

Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece.

Pfizer Center for Digital Innovation, 55535 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2024 Feb 10;24(4):1173. doi: 10.3390/s24041173.

Abstract

Respiratory diseases represent a significant global burden, necessitating efficient diagnostic methods for timely intervention. Digital biomarkers based on audio, acoustics, and sound from the upper and lower respiratory system, as well as the voice, have emerged as valuable indicators of respiratory functionality. Recent advancements in machine learning (ML) algorithms offer promising avenues for the identification and diagnosis of respiratory diseases through the analysis and processing of such audio-based biomarkers. An ever-increasing number of studies employ ML techniques to extract meaningful information from audio biomarkers. Beyond disease identification, these studies explore diverse aspects such as the recognition of cough sounds amidst environmental noise, the analysis of respiratory sounds to detect respiratory symptoms like wheezes and crackles, as well as the analysis of the voice/speech for the evaluation of human voice abnormalities. To provide a more in-depth analysis, this review examines 75 relevant audio analysis studies across three distinct areas of concern based on respiratory diseases' symptoms: (a) cough detection, (b) lower respiratory symptoms identification, and (c) diagnostics from the voice and speech. Furthermore, publicly available datasets commonly utilized in this domain are presented. It is observed that research trends are influenced by the pandemic, with a surge in studies on COVID-19 diagnosis, mobile data acquisition, and remote diagnosis systems.

摘要

呼吸系统疾病是全球重大负担,需要高效的诊断方法以实现及时干预。基于音频、声学和上下呼吸道声音以及语音的数字生物标志物已成为呼吸系统功能的重要指标。机器学习 (ML) 算法的最新进展为通过分析和处理此类基于音频的生物标志物来识别和诊断呼吸系统疾病提供了有前景的途径。越来越多的研究采用 ML 技术从音频生物标志物中提取有意义的信息。除了疾病识别,这些研究还探索了各种方面,例如在环境噪声中识别咳嗽声、分析呼吸声以检测喘息和爆裂声等呼吸症状,以及分析语音/言语以评估人类语音异常。为了进行更深入的分析,本综述根据呼吸系统疾病的症状,从三个不同的关注点检查了 75 项相关的音频分析研究:(a) 咳嗽检测,(b) 下呼吸道症状识别,以及 (c) 来自语音和言语的诊断。此外,还介绍了该领域常用的公开数据集。观察到研究趋势受到大流行的影响,对 COVID-19 诊断、移动数据采集和远程诊断系统的研究激增。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef83/10893010/87fdb8f7c681/sensors-24-01173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验