通过半胱氨酸残基的翻译后修饰对植物S-亚硝基谷胱甘肽还原酶活性进行氧化还原调节。
Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.
作者信息
Tichá Tereza, Lochman Jan, Činčalová Lucie, Luhová Lenka, Petřivalský Marek
机构信息
Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic.
出版信息
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):27-33. doi: 10.1016/j.bbrc.2017.10.090. Epub 2017 Oct 21.
Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode.
一氧化氮(NO)被认为是一种信号分子,参与植物和动物系统中各种重要的生理和病理过程。体内NO反应的主要途径是硫醇的S-亚硝基化,形成S-亚硝基硫醇。S-亚硝基谷胱甘肽还原酶(GSNOR)是S-亚硝基谷胱甘肽(GSNO)降解途径中的关键酶,GSNO是NO与谷胱甘肽的低分子量加合物。GSNOR间接调节细胞中蛋白质S-亚硝基硫醇的水平。本研究聚焦于通过靶半胱氨酸残基的可逆S-亚硝基化和/或氧化修饰对植物GSNORs活性的动态调节。用NO/NO供体或过氧化氢预孵育导致所有研究的植物GSNORs的还原酶和脱氢酶活性降低。用硫醇还原剂孵育完全逆转了亚硝化修饰的抑制作用,部分也逆转了氧化抑制作用。在生物素标记的样品中,免疫检测后证实了植物GSNORs的S-亚硝基化,并且使用质谱法在番茄GSNOR中鉴定出保守的Cys271的S-亚硝基化。体内通过亚硝化或氧化修饰对组成型GSNOR活性的负调节可能是控制GSNO水平的重要机制,GSNO是NO下游信号效应的关键介质,也是脱氢酶反应模式下甲醛解毒的重要机制。