Suppr超能文献

豌豆 S-亚硝基谷胱甘肽还原酶缺陷突变体中植物和根瘤发育的改变及蛋白质 S-亚硝基化。

Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases.

机构信息

Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain.

Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.

出版信息

Plant Cell Physiol. 2020 Jan 1;61(1):105-117. doi: 10.1093/pcp/pcz182.

Abstract

Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.

摘要

一氧化氮(NO)是一种重要的信号分子,主要通过蛋白质 S-亚硝基化来传递其生物活性。这是一种可逆的翻译后修饰(PTM),可能影响蛋白质功能。S-亚硝基谷胱甘肽(GSNO)是细胞内的 NO 库和蛋白质 S-亚硝基化的 NO 供体。酶 S-亚硝基谷胱甘肽还原酶(GSNOR)降解 GSNO,从而间接调节与该 PTM 相关的信号级联反应。在这里,我们对豆科植物百脉根中的两种 GSNOR,LjGSNOR1 和 LjGSNOR2,进行了功能表征。LjGSNOR1 基因在叶片和根中活性很高,而 LjGSNOR2 在根瘤中高度表达。酶活性通过基于氧化还原的 PTM 进行体外调节。还原条件和硫化氢介导的半胱氨酸过硫化诱导了这两种活性,而半胱氨酸氧化或谷胱甘肽化则抑制了它们。Ljgsnor1 敲除突变体中含有更高水平的 S-亚硝基硫醇。亲和层析和随后的鸟枪法蛋白质组学使我们能够鉴定出在突变体和野生型中差异 S-亚硝基化的 19 种蛋白质。这些蛋白质包括参与生物胁迫、蛋白质降解、抗氧化保护和光合作用的蛋白质。我们提出,在突变体植物中,蛋白质 S-亚硝基化的失调可能导致生长抑制、根瘤形成受损、开花和结果延迟等发育改变。我们的研究结果强调了 GSNOR 功能在豆科植物生物学中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验