Suppr超能文献

利用张量分解的无监督特征提取在疾病和 DrugMatrix 数据集的基因表达综合分析中鉴定候选药物。

Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets.

机构信息

Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.

出版信息

Sci Rep. 2017 Oct 23;7(1):13733. doi: 10.1038/s41598-017-13003-0.

Abstract

Identifying drug target genes in gene expression profiles is not straightforward. Because a drug targets proteins and not mRNAs, the mRNA expression of drug target genes is not always altered. In addition, the interaction between a drug and protein can be context dependent; this means that simple drug incubation experiments on cell lines do not always reflect the real situation during active disease. In this paper, I applied tensor-decomposition-based unsupervised feature extraction to the integrated analysis using a mathematical product of gene expression in various diseases and gene expression in the DrugMatrix dataset, where comprehensive data on gene expression during various drug treatments of rats are reported. I found that this strategy, in a fully unsupervised manner, enables researchers to identify a combined set of genes and compounds that significantly overlap with gene and drug interactions identified in the past. As an example illustrating the usefulness of this strategy in drug discovery experiments, I considered cirrhosis, for which no effective drugs have ever been proposed. The present strategy identified two promising therapeutic-target genes, CYPOR and HNFA4; for their protein products, bezafibrate was identified as a promising candidate drug, supported by in silico docking analysis.

摘要

在基因表达谱中识别药物靶标基因并不简单。由于药物的作用靶点是蛋白质而不是 mRNA,因此药物靶标基因的 mRNA 表达并不总是改变。此外,药物与蛋白质之间的相互作用可能依赖于上下文;这意味着在细胞系上进行简单的药物孵育实验并不总是能反映出疾病活跃期间的真实情况。在本文中,我应用基于张量分解的无监督特征提取方法,对使用各种疾病的基因表达和 DrugMatrix 数据集的基因表达的综合分析进行了分析,其中报告了大鼠在各种药物治疗期间的基因表达的综合数据。我发现,这种策略以完全无监督的方式使研究人员能够识别出与过去确定的基因和药物相互作用显著重叠的一组基因和化合物。作为一个说明该策略在药物发现实验中的有用性的示例,我考虑了肝硬化,因为目前还没有提出有效的药物。本策略鉴定出了两个有前途的治疗靶标基因 CYPOR 和 HNFA4;对于它们的蛋白质产物,通过计算机对接分析,鉴定出了 bezafibrate 是一种很有前途的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc86/5653784/4fd488a35d71/41598_2017_13003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验