Suppr超能文献

基于药物诱导的基因表达数据以化学结构无关的方式预测候选药物化合物的靶蛋白。

Predicting target proteins for drug candidate compounds based on drug-induced gene expression data in a chemical structure-independent manner.

作者信息

Hizukuri Yoshiyuki, Sawada Ryusuke, Yamanishi Yoshihiro

机构信息

Faculty of Exploratory Technology, Asubio Pharma Co. Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.

Division of System Cohort, Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.

出版信息

BMC Med Genomics. 2015 Dec 18;8:82. doi: 10.1186/s12920-015-0158-1.

Abstract

BACKGROUND

Phenotype-based high-throughput screening is a useful technique for identifying drug candidate compounds that have a desired phenotype. However, the molecular mechanisms of the hit compounds remain unknown, and substantial effort is required to identify the target proteins associated with the phenotype.

METHODS

In this study, we propose a new method to predict target proteins of drug candidate compounds based on drug-induced gene expression data in Connectivity Map and a machine learning classification technique, which we call the "transcriptomic approach."

RESULTS

Unlike existing methods such as the chemogenomic approach, the transcriptomic approach enabled the prediction of target proteins without dependence on prior knowledge of compound chemical structures. The prediction accuracy of the chemogenomic approach was highly depended on compounds structure similarities in data sets. In contrast, the prediction accuracy of the transcriptomic approach was maintained at a sufficient level, even for benchmark data consisting of structurally diverse compounds.

CONCLUSIONS

The transcriptomic approach reported here is expected to be a useful tool for structure-independent prediction of target proteins for drug candidate compounds.

摘要

背景

基于表型的高通量筛选是一种用于识别具有所需表型的候选药物化合物的有用技术。然而,命中化合物的分子机制仍然未知,并且需要大量努力来鉴定与该表型相关的靶蛋白。

方法

在本研究中,我们提出了一种基于连通性图谱中的药物诱导基因表达数据和机器学习分类技术来预测候选药物化合物靶蛋白的新方法,我们将其称为“转录组学方法”。

结果

与化学基因组学方法等现有方法不同,转录组学方法能够在不依赖化合物化学结构先验知识的情况下预测靶蛋白。化学基因组学方法的预测准确性高度依赖于数据集中化合物的结构相似性。相比之下,即使对于由结构多样的化合物组成的基准数据,转录组学方法的预测准确性也能保持在足够的水平。

结论

本文报道的转录组学方法有望成为一种用于独立于结构预测候选药物化合物靶蛋白的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/122d/4683716/d56154636dfb/12920_2015_158_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验