Suppr超能文献

应对大数据在转化医学和临床护理中的未来应用。

Grappling with the Future Use of Big Data for Translational Medicine and Clinical Care.

作者信息

Murphy S, Castro V, Mandl K

出版信息

Yearb Med Inform. 2017 Aug;26(1):96-102. doi: 10.15265/IY-2017-020. Epub 2017 Sep 11.

Abstract

Although patients may have a wealth of imaging, genomic, monitoring, and personal device data, it has yet to be fully integrated into clinical care. We identify three reasons for the lack of integration. The first is that "Big Data" is poorly managed by most Electronic Medical Record Systems (EMRS). The data is mostly available on "cloud-native" platforms that are outside the scope of most EMRs, and even checking if such data is available on a patient often must be done outside the EMRS. The second reason is that extracting features from the Big Data that are relevant to healthcare often requires complex machine learning algorithms, such as determining if a genomic variant is protein-altering. The third reason is that applications that present Big Data need to be modified constantly to reflect the current state of knowledge, such as instructing when to order a new set of genomic tests. In some cases, applications need to be updated nightly. A new architecture for EMRS is evolving which could unite Big Data, machine learning, and clinical care through a microservice-based architecture which can host applications focused on quite specific aspects of clinical care, such as managing cancer immunotherapy. Informatics innovation, medical research, and clinical care go hand in hand as we look to infuse science-based practice into healthcare. Innovative methods will lead to a new ecosystem of applications (Apps) interacting with healthcare providers to fulfill a promise that is still to be determined.

摘要

尽管患者可能拥有大量的影像、基因组、监测和个人设备数据,但这些数据尚未完全整合到临床护理中。我们确定了缺乏整合的三个原因。第一个原因是,大多数电子病历系统(EMRS)对“大数据”管理不善。这些数据大多存在于大多数电子病历范围之外的“云原生”平台上,甚至要检查患者是否有此类数据,往往必须在电子病历系统之外进行。第二个原因是,从与医疗保健相关的大数据中提取特征通常需要复杂的机器学习算法,例如确定基因组变异是否会改变蛋白质。第三个原因是,呈现大数据的应用程序需要不断修改以反映当前的知识状态,例如指示何时订购一组新的基因组检测。在某些情况下,应用程序需要每晚更新。一种新的电子病历系统架构正在不断发展,它可以通过基于微服务的架构将大数据、机器学习和临床护理结合起来,这种架构可以承载专注于临床护理非常特定方面的应用程序,例如管理癌症免疫疗法。随着我们寻求将基于科学的实践融入医疗保健,信息学创新、医学研究和临床护理是相辅相成的。创新方法将催生一个新的应用程序生态系统(应用程序),这些应用程序与医疗保健提供者互动,以实现一个仍有待确定的承诺。

相似文献

5
Big Data and Analytics in Healthcare.医疗保健中的大数据与分析
Methods Inf Med. 2015;54(6):546-7. doi: 10.3414/ME15-06-1001. Epub 2015 Nov 18.
6
"Big data" and the electronic health record.“大数据”与电子健康记录
Yearb Med Inform. 2014 Aug 15;9(1):97-104. doi: 10.15265/IY-2014-0003.

本文引用的文献

5
Predicting Suicidal Behavior From Longitudinal Electronic Health Records.从纵向电子健康记录预测自杀行为。
Am J Psychiatry. 2017 Feb 1;174(2):154-162. doi: 10.1176/appi.ajp.2016.16010077. Epub 2016 Sep 9.
10
A Comprehensive Program for the Enhancement of Accrual to Clinical Trials.一项提高临床试验入组率的综合计划。
Ann Surg Oncol. 2016 Jul;23(7):2146-52. doi: 10.1245/s10434-016-5091-9. Epub 2016 Jan 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验