亚 10nm 水散性β-NaGdF:X%Eu 纳米粒子,具有增强的生物相容性,可用于体内 X 射线发光计算机断层扫描。
Sub-10 nm Water-Dispersible β-NaGdF:X% Eu Nanoparticles with Enhanced Biocompatibility for in Vivo X-ray Luminescence Computed Tomography.
机构信息
Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China.
出版信息
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):39985-39993. doi: 10.1021/acsami.7b11295. Epub 2017 Nov 7.
As a novel molecular and functional imaging modality, X-ray luminescence computed tomography (XLCT) has shown its potentials in biomedical and preclinic applications. However, there are still some limitations of X-ray-excited luminescent materials, such as low luminescence efficiency, poor biocompatibility, and cytotoxicity, making in vivo XLCT imaging quite challenging. In this study, for the very first time, we present on using sub-10 nm β-NaGdF:X% Eu nanoparticles with poly(acrylic acid) (PAA) surface modification, which demonstrate outstanding luminescence efficiency, uniform size distribution, water dispersity, and biosafety, as the luminescent probes for in vivo XLCT application. The pure hexagonal phase (β-) NaGdF has been successfully synthesized and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and then the results of X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDX), and elemental mapping further confirm Eu ions doped into NaGdF host. Under X-ray excitation, the β-NaGdF nanoparticles with a doping level of 15% Eu exhibited the most efficient luminescence intensity. Notably, the doping level of Eu has no effect on the crystal phase and morphology of the NaGdF-based host. Afterward, β-NaGdF:15% Eu nanoparticles were modified with PAA to enhance the water dispersity and biocompatibility. The compatibility of in vivo XLCT imaging using such nanoparticles was systematically studied via in vitro cytotoxicity, physical phantom, and in vivo imaging experiments. The ultralow cytotoxicity of PAA-modified nanoparticles, which is confirmed by over 80% cell viability of SH-SY5Y cells when treated by high nanoparticle concentration of 200 μg/mL, overcome the major obstacle for in vivo application. In addition, the high luminescence intensity of PAA-modified nanoparticles enables the location error of in vivo XLCT imaging less than 2 mm, which is comparable to that using commercially available bulk material YO:15% Eu. The proposed nanoparticles promote XLCT research into an in vivo stage. Further modification of these nanoparticles with biofunctional molecules could enable the potential of targeting XLCT imaging.
作为一种新型的分子和功能成像模式,X 射线发光计算机断层扫描(XLCT)在生物医学和临床前应用中显示出了潜力。然而,X 射线激发的发光材料仍然存在一些局限性,例如发光效率低、生物相容性差和细胞毒性等问题,这使得体内 XLCT 成像极具挑战性。在这项研究中,我们首次提出使用具有聚(丙烯酸)(PAA)表面修饰的亚 10nmβ-NaGdF:X%Eu 纳米粒子作为体内 XLCT 应用的发光探针,其表现出了出色的发光效率、均匀的尺寸分布、水分散性和生物安全性。通过 X 射线粉末衍射(XRD)和透射电子显微镜(TEM)成功合成并表征了纯六方相(β-)NaGdF,X 射线光电子能谱(XPS)、能谱(EDX)和元素映射的结果进一步证实了 Eu 离子掺杂到 NaGdF 宿主中。在 X 射线激发下,掺杂水平为 15%Eu 的β-NaGdF 纳米粒子表现出最高的发光强度。值得注意的是,Eu 的掺杂水平对基于 NaGdF 的主体的晶体相和形态没有影响。随后,用 PAA 对β-NaGdF:15%Eu 纳米粒子进行修饰,以增强其水分散性和生物相容性。通过体外细胞毒性、物理体模和体内成像实验系统地研究了使用此类纳米粒子进行体内 XLCT 成像的兼容性。通过超过 80%的 SH-SY5Y 细胞存活率(当用 200μg/mL 的高纳米粒子浓度处理时)证实了 PAA 修饰纳米粒子的超低细胞毒性,克服了体内应用的主要障碍。此外,PAA 修饰纳米粒子的高发光强度使得体内 XLCT 成像的定位误差小于 2mm,与使用市售的大块材料 YO:15%Eu 的定位误差相当。所提出的纳米粒子将 XLCT 研究推进到体内阶段。进一步用生物功能分子修饰这些纳米粒子可以使靶向 XLCT 成像的潜力成为可能。