Suppr超能文献

用于小动物的X射线发光成像。

X-ray luminescence imaging for small animals.

作者信息

Lun Michael C, Cong Wenxiang, Arifuzzaman Md, Ranasinghe Meenakshi, Bhattacharya Sriparna, Anker Jeffery, Wang Ge, Li Changqing

机构信息

Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA.

Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11224. doi: 10.1117/12.2544601. Epub 2020 Feb 25.

Abstract

X-ray luminescence imaging emerged for about a decade and combines both the high spatial resolution of x-ray imaging with the high measurement sensitivity of optical imaging, which could result in a great molecular imaging tool for small animals. So far, there are two types of x-ray luminescence computed tomography (XLCT) imaging. One uses a pencil beam x-ray for high spatial resolution at a cost of longer measurement time. The other uses cone beam x-ray to cover the whole mouse to obtain XLCT images at a very short time but with a compromised spatial resolution. Here we review these two methods in this paper and highlight the synthesized nanophosphors by different research groups. We are building a focused x-ray luminescence tomography (FXLT) imaging system, developing a machine-learning based FXLT reconstruction algorithm, and synthesizing nanophosphors with different emission wavelengths. In this paper, we will report our current progress from these three aspects. Briefly, we mount all main components, including the focused x-ray tube, the fiber detector, and the x-ray tube and x-ray detector for a microCT system, on a rotary which is a heavy-duty ring track. A microCT scan will be performed before FXLT scan. For a FXLT scan, we will have four PMTs to measure four fiber detectors at two different wavelengths simultaneously for each linear scan position. We expect the spatial resolution of the FXLT imaging will be around 100 micrometers and a limit of detection of approximately 2 μg/mL (for GdOS:Eu).

摘要

X射线发光成像技术已经出现了大约十年,它将X射线成像的高空间分辨率与光学成像的高测量灵敏度结合在一起,有望成为一种用于小动物的强大分子成像工具。到目前为止,有两种类型的X射线发光计算机断层扫描(XLCT)成像。一种使用笔形束X射线以获得高空间分辨率,但代价是测量时间较长。另一种使用锥形束X射线覆盖整个小鼠,以在极短的时间内获得XLCT图像,但空间分辨率有所降低。在本文中,我们将对这两种方法进行综述,并重点介绍不同研究小组合成的纳米磷光体。我们正在构建一个聚焦X射线发光断层扫描(FXLT)成像系统,开发一种基于机器学习的FXLT重建算法,并合成具有不同发射波长的纳米磷光体。在本文中,我们将报告我们在这三个方面的当前进展。简而言之,我们将所有主要部件,包括聚焦X射线管、光纤探测器以及用于微型CT系统的X射线管和X射线探测器,安装在一个重型环形轨道的旋转台上。在进行FXLT扫描之前将先进行一次微型CT扫描。对于FXLT扫描,在每个线性扫描位置,我们将使用四个光电倍增管同时测量四个光纤探测器在两个不同波长下的信号。我们预计FXLT成像的空间分辨率将达到约100微米,检测限约为2μg/mL(对于GdOS:Eu)。

相似文献

1
X-ray luminescence imaging for small animals.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11224. doi: 10.1117/12.2544601. Epub 2020 Feb 25.
2
Focused x-ray luminescence imaging system for small animals based on a rotary gantry.
J Biomed Opt. 2021 Mar;26(3). doi: 10.1117/1.JBO.26.3.036004.
3
Focused x-ray luminescence computed tomography: experimental studies.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10871. doi: 10.1117/12.2506927. Epub 2019 Feb 27.
4
Radiation dose estimation for pencil beam X-ray luminescence computed tomography imaging.
J Xray Sci Technol. 2021;29(5):773-784. doi: 10.3233/XST-210904.
5
Superfast Scan of Focused X-Ray Luminescence Computed Tomography Imaging.
IEEE Access. 2023;11:134183-134190. doi: 10.1109/access.2023.3336615. Epub 2023 Nov 23.
6
High-resolution x-ray luminescence computed tomography.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2544493. Epub 2020 Feb 28.
7
High-speed X-ray-induced luminescence computed tomography.
J Biophotonics. 2020 Sep;13(9):e202000066. doi: 10.1002/jbio.202000066. Epub 2020 Jun 23.
8
Fast X-ray luminescence computed tomography imaging.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1621-7. doi: 10.1109/TBME.2013.2294633.
9
Collimated superfine x-ray beam based x-ray luminescence computed tomography.
J Xray Sci Technol. 2017;25(6):945-957. doi: 10.3233/XST-17265.
10
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
J Biomed Opt. 2018 Feb;23(2):1-11. doi: 10.1117/1.JBO.23.2.026006.

引用本文的文献

1
X-ray excited luminescence spectroscopy and imaging with NaGdF:Eu and Tb.
RSC Adv. 2021 Sep 24;11(50):31717-31726. doi: 10.1039/d1ra05451a. eCollection 2021 Sep 21.
2
Focused x-ray luminescence imaging system for small animals based on a rotary gantry.
J Biomed Opt. 2021 Mar;26(3). doi: 10.1117/1.JBO.26.3.036004.
3
High-resolution x-ray luminescence computed tomography.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2544493. Epub 2020 Feb 28.

本文引用的文献

2
Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications.
J Mater Chem B. 2017;5(27):5412-5424. doi: 10.1039/C7TB01289F. Epub 2017 Jun 13.
4
X-ray luminescence computed tomography using a focused x-ray beam.
J Biomed Opt. 2017 Nov;22(11):1-11. doi: 10.1117/1.JBO.22.11.116004.
5
Sub-10 nm Water-Dispersible β-NaGdF:X% Eu Nanoparticles with Enhanced Biocompatibility for in Vivo X-ray Luminescence Computed Tomography.
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):39985-39993. doi: 10.1021/acsami.7b11295. Epub 2017 Nov 7.
6
Sensitivity evaluation and selective plane imaging geometry for x-ray-induced luminescence imaging.
Med Phys. 2017 Oct;44(10):5367-5377. doi: 10.1002/mp.12470. Epub 2017 Sep 4.
7
Collimated superfine x-ray beam based x-ray luminescence computed tomography.
J Xray Sci Technol. 2017;25(6):945-957. doi: 10.3233/XST-17265.
8
Sensitivity study of x-ray luminescence computed tomography.
Appl Opt. 2017 Apr 10;56(11):3010-3019. doi: 10.1364/AO.56.003010.
9
Multiple pinhole collimator based X-ray luminescence computed tomography.
Biomed Opt Express. 2016 Jun 3;7(7):2506-23. doi: 10.1364/BOE.7.002506. eCollection 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验