Oliveira Edson R A, de Alencastro Ricardo B, Horta Bruno A C
Instituto de Química - Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 Centro de Tecnologia, Bloco A, Sala 609, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-909, Brazil.
J Comput Aided Mol Des. 2017 Nov;31(11):1009-1019. doi: 10.1007/s10822-017-0076-8. Epub 2017 Oct 24.
Diseases caused by flaviviruses, such as dengue and zika, are globally recognized as major threats. During infection, a critical point in their replicative cycle is the maturation step, which occurs throughout the cellular exocytic pathway. This step is a pH-dependent process that involves the modification of the viral envelope by converting prM (pre-membrane) into M (membrane) proteins with the release of a "pr peptide". After this reaction, the pr peptides remain bound to the viral envelope while the virions cross the acidic trans-Golgi network, and are released only at neutral pH after secretion of the virus particles. Despite this current knowledge, the molecular basis of the flavivirus maturation step is largely unknown. Here, based on the crystal structure of the dengue pr-E complex ("pr peptide" bound to virus envelope protein) and using molecular dynamics simulations, we found that the pH shift from acidic to neutral yields considerable structural changes in the system. Dynamic cross correlation maps and root mean square deviation analyses revealed that the pr-E junction is clearly unstable under neutral pH. Secondary structure analysis also revealed that the fusion loop region, present in the E protein, is sensitive to pH and tends to unstructure at a neutral environment. Moreover, we found that five residues present in the E protein, Gly, His, Thr, Thr and Asn are critical to confer stability to the pr-E complex while inside the Golgi apparatus. This work brings details about the dynamical behavior of the pr-E system, helps to better understand the flavivirus biology and may also be of use in the development of novel antiviral strategies.
由黄病毒引起的疾病,如登革热和寨卡病毒病,在全球范围内被公认为是重大威胁。在感染过程中,其复制周期的一个关键点是成熟步骤,该步骤发生在整个细胞外排途径中。这一步骤是一个依赖pH的过程,涉及通过将prM(前膜)转化为M(膜)蛋白并释放“pr肽”来修饰病毒包膜。此反应后,pr肽在病毒粒子穿过酸性反式高尔基体网络时仍与病毒包膜结合,并且仅在病毒粒子分泌后在中性pH下释放。尽管有了这些现有知识,但黄病毒成熟步骤的分子基础在很大程度上仍然未知。在此,基于登革热pr-E复合物(“pr肽”与病毒包膜蛋白结合)的晶体结构并使用分子动力学模拟,我们发现pH从酸性转变为中性会在系统中产生相当大的结构变化。动态交叉相关图和均方根偏差分析表明,在中性pH下,pr-E连接明显不稳定。二级结构分析还表明,E蛋白中存在的融合环区域对pH敏感,在中性环境中倾向于解折叠。此外,我们发现E蛋白中的五个残基,即甘氨酸、组氨酸、苏氨酸、苏氨酸和天冬酰胺,对于在高尔基体内部赋予pr-E复合物稳定性至关重要。这项工作揭示了pr-E系统的动力学行为细节,有助于更好地理解黄病毒生物学,也可能在新型抗病毒策略的开发中发挥作用。