Suppr超能文献

验证非线性配准以改善减法图像用于多发性硬化症病变检测和量化

Validating Nonlinear Registration to Improve Subtraction Images for Lesion Detection and Quantification in Multiple Sclerosis.

作者信息

Kotari Vikas, Salha Racha, Wang Dana, Wood Emily, Salvetti Marco, Ristori Giovanni, Tang Larry, Bagnato Francesca, Ikonomidou Vasiliki N

机构信息

Electrical Engineering Department, George Mason University, Fairfax, VA.

Bioengineering Department, George Mason University, Fairfax, VA.

出版信息

J Neuroimaging. 2018 Jan;28(1):70-78. doi: 10.1111/jon.12479. Epub 2017 Oct 24.

Abstract

BACKGROUND AND PURPOSE

To propose and validate nonlinear registration techniques for generating subtraction images because of their ability to reduce artifacts and improve lesion detection and lesion volume quantification.

METHODS

Postcontrast T -weighted spin echo and T -weighted dual echo images were acquired for 20 patients with relapsing-remitting multiple sclerosis (RRMS) on a monthly basis for a year (14 women, average age 33.6 ± 6.9). The T -weighted images from the first scan were used as a baseline for each patient. The images from the last scan were registered to the baseline image. Four different registration algorithms used for evaluation included; linear, halfway linear, nonlinear, and nonlinear halfway. Subtraction images were generated after brain extraction, intensity normalization, and Gaussian blurring. Lesion activity changes along with identified artifacts were scored on all four techniques by two independent observers. Additionally, quantitative analysis of the algorithms was performed by estimating the volume changes of simulated lesions and real lesions. For real lesion volume change analysis, five subjects were selected randomly. Subtraction images were generated between all the 11 time points and the baseline image using linear and nonlinear registration for the five subjects.

RESULTS

Lesion activity detection resulted in similar performance among the four registration techniques. Lesion volume measurements on subtraction images using nonlinear registration were closer to lesion volume on T -weighted images. A statistically significant difference was observed among the four registration techniques while evaluating yin-yang artifacts. Pairwise comparisons showed that nonlinear registration results in the least amount of yin-yang artifacts, which are significantly different.

CONCLUSIONS

Nonlinear registration for generation of subtraction images has been demonstrated to be a promising new technique as it shows improvement in lesion activity change detection. This approach decreases the number of artifacts in subtraction images. With improved lesion volume estimates and reduced artifacts, nonlinear registration may lead to discarding less subject data and an improvement in the statistical power of subtraction imaging studies.

摘要

背景与目的

提出并验证用于生成减法图像的非线性配准技术,因为它们能够减少伪影并改善病变检测和病变体积量化。

方法

对20例复发缓解型多发性硬化症(RRMS)患者每月进行一次增强后T加权自旋回波和T加权双回波图像采集,持续一年(14名女性,平均年龄33.6±6.9岁)。将首次扫描的T加权图像用作每位患者的基线。将最后一次扫描的图像配准到基线图像。用于评估的四种不同配准算法包括:线性、半线性、非线性和非线性半线性。在进行脑提取、强度归一化和高斯模糊后生成减法图像。由两名独立观察者对所有四种技术上的病变活动变化以及识别出的伪影进行评分。此外,通过估计模拟病变和真实病变的体积变化对算法进行定量分析。对于真实病变体积变化分析,随机选择了五名受试者。使用线性和非线性配准为这五名受试者在所有11个时间点与基线图像之间生成减法图像。

结果

在四种配准技术中,病变活动检测表现相似。使用非线性配准的减法图像上的病变体积测量值更接近T加权图像上的病变体积。在评估阴阳伪影时,四种配准技术之间观察到统计学上的显著差异。成对比较表明,非线性配准产生的阴阳伪影数量最少,差异显著。

结论

已证明用于生成减法图像的非线性配准是一种有前景的新技术,因为它在病变活动变化检测方面有所改进。这种方法减少了减法图像中的伪影数量。随着病变体积估计的改善和伪影的减少,非线性配准可能会减少被舍弃的受试者数据数量,并提高减法成像研究的统计效力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验