Suppr超能文献

用于多发性硬化症中新 T2 病灶检测的带强度减影和变形场特征的有监督框架。

A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis.

机构信息

Research Institute of Computer Vision and Robotics, University of Girona, Spain; Computer Science Department, Faculty of Computers and Information, Assiut University, Egypt.

Research Institute of Computer Vision and Robotics, University of Girona, Spain.

出版信息

Neuroimage Clin. 2017 Nov 20;17:607-615. doi: 10.1016/j.nicl.2017.11.015. eCollection 2018.

Abstract

INTRODUCTION

Longitudinal magnetic resonance imaging (MRI) analysis has an important role in multiple sclerosis diagnosis and follow-up. The presence of new T2-w lesions on brain MRI scans is considered a prognostic and predictive biomarker for the disease. In this study, we propose a supervised approach for detecting new T2-w lesions using features from image intensities, subtraction values, and deformation fields (DF).

METHODS

One year apart multi-channel brain MRI scans were obtained for 60 patients, 36 of them with new T2-w lesions. Images from both temporal points were preprocessed and co-registered. Afterwards, they were registered using multi-resolution affine registration, allowing their subtraction. In particular, the DFs between both images were computed with the Demons non-rigid registration algorithm. Afterwards, a logistic regression model was trained with features from image intensities, subtraction values, and DF operators. We evaluated the performance of the model following a leave-one-out cross-validation scheme.

RESULTS

In terms of detection, we obtained a mean Dice similarity coefficient of 0.77 with a true-positive rate of 74.30% and a false-positive detection rate of 11.86%. In terms of segmentation, we obtained a mean Dice similarity coefficient of 0.56. The performance of our model was significantly higher than state-of-the-art methods.

CONCLUSIONS

The performance of the proposed method shows the benefits of using DF operators as features to train a supervised learning model. Compared to other methods, the proposed model decreases the number of false-positives while increasing the number of true-positives, which is relevant for clinical settings.

摘要

简介

纵向磁共振成像(MRI)分析在多发性硬化症的诊断和随访中具有重要作用。脑 MRI 扫描上新出现的 T2 加权病变被认为是该疾病的预后和预测生物标志物。在这项研究中,我们提出了一种使用来自图像强度、差值和变形场(DF)的特征来检测新 T2 加权病变的监督方法。

方法

对 60 名患者的一年期多通道脑 MRI 扫描进行了研究,其中 36 名患者出现了新的 T2 加权病变。来自两个时间点的图像进行了预处理和配准。然后,使用多分辨率仿射配准对其进行配准,允许它们相减。特别是,使用 Demons 非刚性配准算法计算了两幅图像之间的 DF。然后,使用来自图像强度、差值和 DF 算子的特征训练逻辑回归模型。我们采用留一交叉验证方案评估模型的性能。

结果

在检测方面,我们获得了 0.77 的平均骰子相似系数,真阳性率为 74.30%,假阳性检测率为 11.86%。在分割方面,我们获得了 0.56 的平均骰子相似系数。我们的模型性能明显优于最新方法。

结论

所提出方法的性能表明了使用 DF 算子作为特征来训练监督学习模型的优势。与其他方法相比,该模型减少了假阳性的数量,同时增加了真阳性的数量,这对于临床环境很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ac/5716954/d6595a4f9bb6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验