Suppr超能文献

开发一种建模方法,用于估算马萨诸塞州东部家庭室内外硫比,并预测室内 PM 和黑碳浓度。

Development of a modeling approach to estimate indoor-to-outdoor sulfur ratios and predict indoor PM and black carbon concentrations for Eastern Massachusetts households.

机构信息

Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.

Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, Massachusetts, USA.

出版信息

J Expo Sci Environ Epidemiol. 2018 Mar;28(2):125-130. doi: 10.1038/jes.2017.11. Epub 2017 Oct 18.

Abstract

The effects of indoor air pollution on human health have drawn increasing attention among the scientific community as individuals spend most of their time indoors. However, indoor air sampling is labor-intensive and costly, which limits the ability to study the adverse health effects related to indoor air pollutants. To overcome this challenge, many researchers have attempted to predict indoor exposures based on outdoor pollutant concentrations, home characteristics, and weather parameters. Typically, these models require knowledge of the infiltration factor, which indicates the fraction of ambient particles that penetrates indoors. For estimating indoor fine particulate matter (PM) exposure, a common approach is to use the indoor-to-outdoor sulfur ratio (S/S) as a proxy of the infiltration factor. The objective of this study was to develop a robust model that estimates S/S for individual households that can be incorporated into models to predict indoor PM and black carbon (BC) concentrations. Overall, our model adequately estimated S/S with an out-of-sample by home-season R of 0.89. Estimated S/S reflected behaviors that influence particle infiltration, including window opening, use of forced air heating, and air purifier. Sulfur ratio-adjusted models predicted indoor PM and BC with high precision, with out-of-sample R values of 0.79 and 0.76, respectively.

摘要

室内空气污染对人类健康的影响引起了科学界的越来越多的关注,因为人们大部分时间都在室内度过。然而,室内空气采样是劳动密集型和昂贵的,这限制了研究与室内空气污染物相关的不良健康影响的能力。为了克服这一挑战,许多研究人员试图根据室外污染物浓度、家庭特征和气象参数来预测室内暴露。通常,这些模型需要知道渗透率因子的知识,渗透率因子表示穿透室内的环境颗粒的分数。对于估计室内细颗粒物(PM)暴露,常用的方法是使用室内-室外硫比(S/S)作为渗透率因子的替代物。本研究的目的是开发一个能够估算个别家庭的 S/S 的稳健模型,该模型可以纳入模型来预测室内 PM 和黑碳(BC)浓度。总的来说,我们的模型能够很好地估计 S/S,家庭-季节的外样本 R 值为 0.89。估计的 S/S 反映了影响颗粒渗透的行为,包括开窗、使用强制空气加热和空气净化器。经硫比调整的模型对室内 PM 和 BC 的预测具有很高的精度,外样本 R 值分别为 0.79 和 0.76。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b91/5817392/ef542a04bd87/jes201711f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验