Suppr超能文献

固氮酶辅因子组装:元素清单。

Nitrogenase Cofactor Assembly: An Elemental Inventory.

机构信息

Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States.

Department of Chemistry, University of California , Irvine, California 92697-2025, United States.

出版信息

Acc Chem Res. 2017 Nov 21;50(11):2834-2841. doi: 10.1021/acs.accounts.7b00417. Epub 2017 Oct 24.

Abstract

Nitrogenase is known for its remarkable ability to catalyze the reduction of N to NH, and C substrates to short-chain hydrocarbon products, under ambient conditions. The best-studied Mo-nitrogenase utilizes a complex metallocofactor as the site of substrate binding and reduction. Designated the M-cluster, this [MoFeSC(R-homocitrate)] cluster can be viewed as [MoFeS] and [FeS] subclusters bridged by three μ-sulfides and one μ-interstitial carbide, with its Mo end further coordinated by an R-homocitrate moiety. The unique cofactor has attracted considerable attention ever since its discovery; however, the complexity of its structure has hindered mechanistic understanding and chemical synthesis of this cofactor. Motivated by the pressing questions related to the structure and function of the nitrogenase cofactor, one major thrust of our research has been to unravel the key biosynthetic steps of this metallocluster to cultivate a deeper understanding of these reactions and their effects on functionalizing the cofactor. In this Account, we will discuss our recent work that provides insights into how simple Fe and S atoms, along with a single C atom, a heterometallic Mo atom and an organic homocitrate entity, are assembled into one of the most complex metalloclusters known in Nature. Combined biochemical, spectroscopic and structural studies have led us to a working model of M-cluster assembly, which starts with the sequential synthesis of small [FeS] and [FeS] units by NifS/U, followed by the coupling and rearrangement of two [FeS] clusters on NifB concomitant with the insertion of an interstitial carbide and a "9th sulfur" that give rise to a [FeSC] core that is nearly indistinguishable in structure to the M-cluster except for the absence of Mo and homocitrate. This 8Fe core is then matured into an M-cluster on NifEN upon substitution of a Mo-homocitrate conjugate for one terminal Fe atom of the cluster prior to transfer of the M-cluster to its target binding site in the catalytic component of Mo-nitrogenase. Taking stock of the elemental inventory during the cofactor assembly process, the core Fe and S atoms are derived from modular fusion of FeS building blocks, going through 2Fe, 4Fe and 8Fe stages to generate an 8Fe core of the cofactor. However, such a flow of Fe/S along the biosynthetic pathway of the M-cluster is "intervened" by the insertion of C and Mo, which renders the cofactor unique in structure and reactivity. Insertion of C occurs through a novel, radical SAM-dependent mechanism, which involves SN2-type methyl transfer from SAM to a [FeS] cluster pair, hydrogen abstraction of the transferred methyl group by a SAM-derived 5'-dA· radical, and further deprotonation of the resultant methylene radical concomitant with radical chemistry-based coupling and rearrangement of the [FeS] cluster pair into an [FeSC] core. Insertion of Mo, on the other hand, employs an ATPase-dependent mechanism that parallels metal trafficking in the biosynthesis of molybdopterin and CO dehydrogenase cofactors. These findings provide a nice framework for further exploration of the "black box" of nitrogenase cofactor assembly and function.

摘要

固氮酶以其在环境条件下催化 N 还原为 NH 和 C 底物生成短链碳氢化合物产物的非凡能力而闻名。研究最充分的钼固氮酶利用复杂的金属络合物作为底物结合和还原的位点。指定的 M 簇可以看作是 [MoFeS(C(R)-同型柠檬酸)] 簇,由三个 μ-硫和一个 μ-间隙碳化物桥接的 [MoFeS] 和 [FeS] 亚簇,其 Mo 端进一步由 R-同型柠檬酸部分配位。自发现以来,这个独特的辅因子引起了相当大的关注;然而,其结构的复杂性阻碍了对该辅因子的结构和化学合成的理解。受与固氮酶辅因子的结构和功能相关的紧迫问题的驱动,我们研究的一个主要方向是阐明该金属簇的关键生物合成步骤,以培养对这些反应及其对功能化辅因子的影响的更深入理解。在本账目中,我们将讨论我们最近的工作,这些工作提供了关于简单的 Fe 和 S 原子、单个 C 原子、杂金属 Mo 原子和有机同型柠檬酸实体如何组装成自然界中已知的最复杂的金属簇之一的见解。生化、光谱和结构研究的结合使我们对 M 簇组装的工作模型有了深入的了解,该模型从 NifS/U 依次合成小的 [FeS] 和 [FeS] 单元开始,然后在 NifB 上耦合和重排两个 [FeS] 簇,同时插入一个间隙碳化物和一个“第 9 个硫”,形成一个 [FeSC] 核,其结构与 M 簇几乎无法区分,除了缺少 Mo 和同型柠檬酸。然后,在将 Mo-同型柠檬酸共轭物替代簇的一个末端 Fe 原子之前,将这个 8Fe 核在 NifEN 上成熟为 M 簇,然后将 M 簇转移到钼固氮酶催化组件的目标结合位点。在考虑到辅因子组装过程中的元素库存时,核心的 Fe 和 S 原子来自 FeS 构建块的模块化融合,经历了 2Fe、4Fe 和 8Fe 阶段,以生成辅因子的 8Fe 核心。然而,这种沿着 M 簇生物合成途径的 Fe/S 流动“被”C 和 Mo 的插入所“干预”,这使得辅因子在结构和反应性上独一无二。C 的插入是通过一种新颖的、依赖于自由基 SAM 的机制发生的,该机制涉及从 SAM 到 [FeS] 簇对的 SN2 型甲基转移、SAM 衍生的 5'-dA·自由基对转移甲基的氢提取,以及随后的去质子化结果与 [FeS] 簇对的自由基化学偶联和重排为 [FeSC] 核。另一方面,Mo 的插入采用依赖于 ATP 酶的机制,该机制与钼喋呤和 CO 脱氢酶辅因子生物合成中的金属转运平行。这些发现为进一步探索固氮酶辅因子组装和功能的“黑盒子”提供了一个很好的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验