Nagelski Alexandra L, Fataftah Majed S, MacMillan Samantha N, MacLeod K Cory, McWilliams Sean F, Mercado Brandon Q, Lancaster Kyle M, Holland Patrick L
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
J Am Chem Soc. 2024 Nov 27;146(47):32415-32430. doi: 10.1021/jacs.4c08358. Epub 2024 Nov 12.
Carbon monoxide inhibited forms of nitrogenases have carbonyl (CO) and carbide (C) bridges, which are common in synthetic iron complexes with strong-field ligand environments but rare in iron sites with weak-field ligand environments analogous to the enzyme. Here, we explore the fundamental bonding description of bridging CO in high-spin iron systems. We describe the isolation of several diiron carbonyls and related species, and elucidate their electronic structures, magnetic coupling, and characteristic structural and vibrational parameters. These high-spin iron complexes exhibit equivalent π-backbonding abilities to low-spin iron complexes. Sequential reduction and silylation of a formally diiron(I) bridging CO complex ultimately gives a formally diiron(IV) bridging carbyne complex. Despite the large range of formal oxidation states across this series, X-ray absorption spectroscopy and density functional theory calculations indicate that the electron density at the iron sites does not change. Thus, the [Fe(μ-CO)] core undergoes redox changes at the bridging carbonyls rather than the metal centers, rendering the metal's formal oxidation state misleading. The ability of the FeC core to easily shift charge between the metals and the ligands has implications for nitrogenases, and for other multinuclear systems for redox catalysis.
一氧化碳抑制型固氮酶具有羰基(CO)和碳化物(C)桥,这在具有强场配体环境的合成铁配合物中很常见,但在与该酶类似的具有弱场配体环境的铁位点中很少见。在此,我们探索高自旋铁体系中桥连CO的基本键合描述。我们描述了几种二铁羰基化合物及相关物种的分离,并阐明了它们的电子结构、磁耦合以及特征结构和振动参数。这些高自旋铁配合物表现出与低自旋铁配合物相当的π反馈键合能力。一个形式上为二铁(I)的桥连CO配合物经连续还原和硅烷化最终得到一个形式上为二铁(IV)的桥连卡宾配合物。尽管该系列的形式氧化态范围很大,但X射线吸收光谱和密度泛函理论计算表明,铁位点处的电子密度并未改变。因此,[Fe(μ-CO)]核心在桥连羰基处而非金属中心发生氧化还原变化,使得金属的形式氧化态具有误导性。FeC核心在金属和配体之间轻松转移电荷的能力对固氮酶以及其他用于氧化还原催化的多核体系具有重要意义。