Suppr超能文献

基于棕榈仁壳活性炭从水溶液中吸附锌(II)的嵌入神经网络的粒子群模拟和优化。

Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

机构信息

Petroleum and Chemical Engineering, Universiti Teknologi Brunei, Brunei Darussalam.

University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550, Stuttgart, Germany.

出版信息

J Environ Manage. 2018 Jan 15;206:178-191. doi: 10.1016/j.jenvman.2017.10.026. Epub 2017 Dec 7.

Abstract

Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM.

摘要

锌(II)是工业废水中常见的重金属污染物之一。可以通过各种技术去除工业废水中的污染物,其中吸附被认为是一种有效的方法。吸附的应用受到吸附剂成本高的限制。在这方面,我们研究了一种由棕榈仁壳基农业废弃物制成的低成本吸附剂,以评估其从废水中去除 Zn(II)的效率及其在水溶液中的应用。系统研究了初始浓度、pH 值、停留时间、活性炭(AC)用量和处理温度等独立过程变量对基于棕榈仁壳的 AC 从批量吸附过程中去除 Zn(II)的影响。根据实验矩阵的设计,在实验范围内对每个过程变量进行了 50 次实验。使用响应面法(RSM)和人工神经网络(ANN)方法研究了达到最大去除效率的最佳过程变量值。使用方差分析和 RSM-CCD 框架开发了一个由一阶和二阶回归模型组成的二次模型。嵌入在 ANN 架构上的粒子群优化是一种元启发式优化,用于优化神经网络的搜索空间。优化后的训练神经网络很好地描述了测试数据和验证数据,R 值分别为 0.9106 和 0.9279。结果表明,基于 ANN-PSO 的模型预测优于 RSM 提供的二次模型预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验