Downstream Processing Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India.
Department of Chemical Engineering, A.C. Tech, Anna University, Chennai, 600 025, India.
J Environ Manage. 2018 Dec 1;227:216-228. doi: 10.1016/j.jenvman.2018.08.088. Epub 2018 Sep 5.
Design of experiment and artificial neural networks (ANN) have been effectively employed to predict the rate of uptake of Zn(II) ions onto defatted pongamia oil cake. Four independent variables such as, pH (2.0-7.0), initial concentration of Zn(II) ions (50-500 mg/L), temperature (30ºC-50 °C), and dosage of biosorbent (1.0-5.0 g/L) were used for the batch mode while the three independent variables viz. flowrate, initial concentration of Zn(II) ions and bed height were employed for the continuous mode. Second-order polynomial equations were then derived to predict the Zn(II) ion uptake rate. The optimum conditions for batch studies was found to be pH: 4.45, metal ion concentration: 462.48 mg/L, dosage: 2.88 g/L, temperature: 303 K and on the other hand the column studies flow rate: 5.59 mL/min, metal ion concentration: 499.3 mg/L and bed height: 14.82 cm. Under these optimal condition, the adsorption capacity was 80.66 mg/g and 66.29 mg/g for batch and column studies, respectively. The same data was fed to train a feed-forward multilayered perceptron, using MATLAB to develop the ANN based model. The predictive capabilities of the two methodologies were compared, by means of the absolute average deviation (AAD) (4.57%), model predictive error (MPE) (4.15%), root mean square error (RMSE) (3.19), standard error of prediction (SEP) (4.23) and correlation coefficient (R) (0.99) for ANN and for RSM AAD (16.27%), MPE (21,25%), RMSE (13.15%), SEP and R (0.96) by validation data. The findings suggested that compared to the prediction ability of RSM model, the properly trained ANN model has better prediction ability. In batch studies, equilibrium data was used to determine the isotherm constants and first and second order rate constants. In column, bed depth service time (BDST) and Thomas model was used to fit the obtained column data.
实验设计和人工神经网络 (ANN) 已被有效地用于预测 Zn(II)离子被脱脂麻疯树饼吸收的速率。在批量模式下使用了四个独立变量,例如 pH(2.0-7.0)、Zn(II)离子的初始浓度(50-500mg/L)、温度(30°C-50°C)和生物吸附剂用量(1.0-5.0g/L),而连续模式则使用了三个独立变量,即流速、Zn(II)离子的初始浓度和床层高度。然后推导出二阶多项式方程来预测 Zn(II)离子的吸收速率。批处理研究的最佳条件为 pH:4.45、金属离子浓度:462.48mg/L、用量:2.88g/L、温度:303K;另一方面,柱研究的流速为 5.59mL/min、金属离子浓度:499.3mg/L 和床层高度:14.82cm。在这些最佳条件下,吸附容量分别为 80.66mg/g 和 66.29mg/g。将相同的数据输入到一个前馈多层感知器中,使用 MATLAB 开发基于 ANN 的模型。通过绝对平均偏差 (AAD)(4.57%)、模型预测误差 (MPE)(4.15%)、均方根误差 (RMSE)(3.19%)、预测误差标准差 (SEP)(4.23%)和相关系数 (R)(0.99%)比较了两种方法的预测能力,对于 ANN 为 0.99%,对于 RSM 为 AAD(16.27%)、MPE(21.25%)、RMSE(13.15%)、SEP 和 R(0.96%)通过验证数据。研究结果表明,与 RSM 模型的预测能力相比,经过适当训练的 ANN 模型具有更好的预测能力。在批量研究中,使用平衡数据确定等温常数和一级和二级速率常数。在柱中,使用床层深度工作时间 (BDST) 和 Thomas 模型拟合获得的柱数据。