一种利用稳态视觉诱发电位和眼动信号的双频道混合脑-机接口系统,用于家庭自动化控制。
A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
机构信息
Department of Electronic Engineering, Pukyong National University, Busan 48513, Korea.
出版信息
Sensors (Basel). 2020 Sep 24;20(19):5474. doi: 10.3390/s20195474.
The goal of this study was to develop and validate a hybrid brain-computer interface (BCI) system for home automation control. Over the past decade, BCIs represent a promising possibility in the field of medical (e.g., neuronal rehabilitation), educational, mind reading, and remote communication. However, BCI is still difficult to use in daily life because of the challenges of the unfriendly head device, lower classification accuracy, high cost, and complex operation. In this study, we propose a hybrid BCI system for home automation control with two brain signals acquiring electrodes and simple tasks, which only requires the subject to focus on the stimulus and eye blink. The stimulus is utilized to select commands by generating steady-state visually evoked potential (SSVEP). The single eye blinks (i.e., confirm the selection) and double eye blinks (i.e., deny and re-selection) are employed to calibrate the SSVEP command. Besides that, the short-time Fourier transform and convolution neural network algorithms are utilized for feature extraction and classification, respectively. The results show that the proposed system could provide 38 control commands with a 2 s time window and a good accuracy (i.e., 96.92%) using one bipolar electroencephalogram (EEG) channel. This work presents a novel BCI approach for the home automation application based on SSVEP and eye blink signals, which could be useful for the disabled. In addition, the provided strategy of this study-a friendly channel configuration (i.e., one bipolar EEG channel), high accuracy, multiple commands, and short response time-might also offer a reference for the other BCI controlled applications.
本研究旨在开发和验证一种用于家庭自动化控制的混合脑机接口 (BCI) 系统。在过去的十年中,BCI 在医学(例如神经元康复)、教育、读心术和远程通信等领域具有很大的应用潜力。然而,由于不友好的头戴设备、较低的分类精度、高成本和复杂的操作等挑战,BCI 仍然难以在日常生活中使用。在本研究中,我们提出了一种用于家庭自动化控制的混合 BCI 系统,该系统使用两个脑信号采集电极和简单的任务,仅要求受试者专注于刺激和眼动。刺激用于通过生成稳态视觉诱发电位 (SSVEP) 来选择命令。单次眼动(即确认选择)和双次眼动(即否认和重新选择)用于校准 SSVEP 命令。此外,使用短时傅里叶变换和卷积神经网络算法分别进行特征提取和分类。结果表明,该系统可以在 2 秒的时间窗口内使用一个双极脑电 (EEG) 通道提供 38 个控制命令,并且具有较高的准确性(即 96.92%)。这项工作提出了一种基于 SSVEP 和眼动信号的新型 BCI 方法,可用于残疾人。此外,本研究提供的策略(即友好的通道配置(即一个双极 EEG 通道)、高精度、多个命令和短的响应时间)也可能为其他 BCI 控制应用提供参考。