Suppr超能文献

基于磁共振矢状位 T2 加权像的无图谱颈椎脊髓自动分割

Atlas-Free Cervical Spinal Cord Segmentation on Midsagittal T2-Weighted Magnetic Resonance Images.

机构信息

Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Renai Rd., Taipei City 10051, Taiwan.

Department of Neurosurgery, Taipei Hospital, Ministry of Health and Welfare, No. 127, Siyuan Rd., New Taipei City 24213, Taiwan.

出版信息

J Healthc Eng. 2017;2017:8691505. doi: 10.1155/2017/8691505. Epub 2017 May 4.

Abstract

An automatic atlas-free method for segmenting the cervical spinal cord on midsagittal T2-weighted magnetic resonance images (MRI) is presented. Pertinent anatomical knowledge is transformed into constraints employed at different stages of the algorithm. After picking up the midsagittal image, the spinal cord is detected using expectation maximization and dynamic programming (DP). Using DP, the anterior and posterior edges of the spinal canal and the vertebral column are detected. The vertebral bodies and the intervertebral disks are then segmented using region growing. Then, the anterior and posterior edges of the spinal cord are detected using median filtering followed by DP. We applied this method to 79 noncontrast MRI studies over a 3-month period. The spinal cords were detected in all cases, and the vertebral bodies were successfully labeled in 67 (85%) of them. Our algorithm had very good performance. Compared to manual segmentation results, the Jaccard indices ranged from 0.937 to 1, with a mean of 0.980 ± 0.014. The Hausdorff distances between the automatically detected and manually delineated anterior and posterior spinal cord edges were both 1.0 ± 0.5 mm. Used alone or in combination, our method lays a foundation for computer-aided diagnosis of spinal diseases, particularly cervical spondylotic myelopathy.

摘要

提出了一种在矢状面 T2 加权磁共振图像 (MRI) 上自动分割颈椎脊髓的无图谱方法。相关解剖学知识被转化为算法不同阶段使用的约束条件。在获取矢状面图像后,使用期望最大化和动态规划 (DP) 检测脊髓。使用 DP 检测椎管和脊柱的前后缘。然后使用区域生长分割椎体和椎间盘。然后,使用中值滤波和 DP 检测脊髓的前后缘。我们在 3 个月的时间内对 79 项非对比 MRI 研究应用了这种方法。在所有情况下都检测到了脊髓,并且在其中 67 例 (85%) 成功标记了椎体。我们的算法性能非常好。与手动分割结果相比,Jaccard 指数范围为 0.937 至 1,平均值为 0.980±0.014。自动检测和手动描绘的脊髓前缘和后缘之间的 Hausdorff 距离均为 1.0±0.5mm。单独使用或组合使用,我们的方法为脊柱疾病的计算机辅助诊断,特别是颈椎病奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a407/5435982/0547dd6816e4/JHE2017-8691505.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验