Suppr超能文献

数值评估 Fontan 血流动力学中入口速度剖面分析。

Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics.

机构信息

Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 232, Atlanta, GA, 30313-2412, USA.

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Ann Biomed Eng. 2019 Nov;47(11):2258-2270. doi: 10.1007/s10439-019-02307-z. Epub 2019 Jun 24.

Abstract

Computational fluid dynamic (CFD) simulations are widely utilized to assess Fontan hemodynamics that are related to long-term complications. No previous studies have systemically investigated the effects of using different inlet velocity profiles in Fontan simulations. This study implements real, patient-specific velocity profiles for numerical assessment of Fontan hemodynamics using CFD simulations. Four additional, artificial velocity profiles were used for comparison: (1) flat, (2) parabolic, (3) Womersley, and (4) parabolic with inlet extensions [to develop flow before entering the total cavopulmonary connection (TCPC)]. The differences arising from the five velocity profiles, as well as discrepancies between the real and each of the artificial velocity profiles, were quantified by examining clinically important metrics in TCPC hemodynamics: power loss (PL), viscous dissipation rate (VDR), hepatic flow distribution, and regions of low wall shear stress. Statistically significant differences were observed in PL and VDR between simulations using real and flat velocity profiles, but differences between those using real velocity profiles and the other three artificial profiles did not reach statistical significance. These conclusions suggest that the artificial velocity profiles (2)-(4) are acceptable surrogates for real velocity profiles in Fontan simulations, but parabolic profiles are recommended because of their low computational demands and prevalent applicability.

摘要

计算流体动力学 (CFD) 模拟广泛用于评估与长期并发症相关的 Fontan 血流动力学。以前的研究尚未系统地研究在 Fontan 模拟中使用不同入口速度剖面的影响。本研究使用 CFD 模拟通过实际的、特定于患者的速度剖面来实现 Fontan 血流动力学的数值评估。还使用了另外四个人为的速度剖面进行比较:(1) 平坦的,(2) 抛物线形的,(3) Womersley 型,和 (4) 带入口扩展的抛物线形[在进入全腔肺动脉连接 (TCPC) 之前发展流动]。通过检查 TCPC 血流动力学中的临床重要指标:功率损失 (PL)、粘性耗散率 (VDR)、肝血流分布和低壁面剪切应力区域,量化了五个速度剖面之间的差异以及真实和每个人为速度剖面之间的差异。在使用真实和平坦速度剖面的模拟中,PL 和 VDR 之间观察到统计学上的显著差异,但在使用真实速度剖面和其他三个人为剖面的模拟中,差异未达到统计学意义。这些结论表明,在 Fontan 模拟中,人为速度剖面 (2)-(4) 可以作为真实速度剖面的可接受替代品,但由于计算需求低和广泛适用性,建议使用抛物线型剖面。

相似文献

1
Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics.
Ann Biomed Eng. 2019 Nov;47(11):2258-2270. doi: 10.1007/s10439-019-02307-z. Epub 2019 Jun 24.
2
The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
Biomed Eng Online. 2018 May 30;17(1):66. doi: 10.1186/s12938-018-0497-1.
4
Impact of hemodynamics and fluid energetics on liver fibrosis after Fontan operation.
J Thorac Cardiovasc Surg. 2018 Jul;156(1):267-275. doi: 10.1016/j.jtcvs.2018.02.078. Epub 2018 Mar 7.
5
Biomechanical Analysis of Age-Dependent Changes in Fontan Power Loss.
Ann Biomed Eng. 2024 Sep;52(9):2440-2456. doi: 10.1007/s10439-024-03534-9. Epub 2024 May 16.
6
Postsurgical comparison of pulsatile hemodynamics in five unique total cavopulmonary connections: identifying ideal connection strategies.
Ann Thorac Surg. 2013 Oct;96(4):1398-1404. doi: 10.1016/j.athoracsur.2013.05.035. Epub 2013 Jul 30.
8
Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics.
Ann Biomed Eng. 2020 Aug;48(8):2204-2217. doi: 10.1007/s10439-020-02527-8. Epub 2020 May 5.
9
Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections.
J Thorac Cardiovasc Surg. 2013 Mar;145(3):663-70. doi: 10.1016/j.jtcvs.2012.03.076. Epub 2012 May 4.
10
Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis.
J Thorac Cardiovasc Surg. 2014 Oct;148(4):1481-9. doi: 10.1016/j.jtcvs.2013.11.060. Epub 2013 Dec 31.

引用本文的文献

2
Multiphysiologic State Computational Fluid Dynamics Modeling for Planning Fontan With Interrupted Inferior Vena Cava.
JACC Adv. 2024 Jun 13;3(7):101057. doi: 10.1016/j.jacadv.2024.101057. eCollection 2024 Jul.
4
Method for estimating pulsatile wall shear stress from one-dimensional velocity waveforms.
Physiol Rep. 2023 Apr;11(7):e15628. doi: 10.14814/phy2.15628.
5
Computational Investigation of Anastomosis Options of a Right-Heart Pump to Patient Specific Pulmonary Arteries.
Ann Biomed Eng. 2022 Aug;50(8):929-940. doi: 10.1007/s10439-022-02969-2. Epub 2022 Apr 22.
6
Computational Fluid Dynamics Support for Fontan Planning in Minutes, Not Hours: The Next Step in Clinical Pre-Interventional Simulations.
J Cardiovasc Transl Res. 2022 Aug;15(4):708-720. doi: 10.1007/s12265-021-10198-6. Epub 2021 Dec 27.
7
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application.
Cardiovasc Eng Technol. 2021 Dec;12(6):618-630. doi: 10.1007/s13239-021-00541-y. Epub 2021 Jun 10.
8
Is Doppler Echocardiography Adequate for Surgical Planning of Single Ventricle Patients?
Cardiovasc Eng Technol. 2021 Dec;12(6):606-617. doi: 10.1007/s13239-021-00533-y. Epub 2021 Apr 30.
10
Fluid-Structure Interaction Simulation of an Intra-Atrial Fontan Connection.
Biology (Basel). 2020 Nov 24;9(12):412. doi: 10.3390/biology9120412.

本文引用的文献

1
The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning.
J Biomech. 2019 Jan 3;82:87-95. doi: 10.1016/j.jbiomech.2018.10.013. Epub 2018 Oct 25.
2
Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions.
J Cardiovasc Transl Res. 2018 Apr;11(2):133-144. doi: 10.1007/s12265-018-9786-0. Epub 2018 Jan 16.
3
The Advantages of Viscous Dissipation Rate over Simplified Power Loss as a Fontan Hemodynamic Metric.
Ann Biomed Eng. 2018 Mar;46(3):404-416. doi: 10.1007/s10439-017-1950-1. Epub 2017 Nov 1.
5
Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: A clinical and computational modeling study.
Int J Cardiol Heart Vasc. 2015 Aug 13;9:100-108. doi: 10.1016/j.ijcha.2015.08.002. eCollection 2015 Dec 7.
6
Benchmark problems for numerical treatment of backflow at open boundaries.
Int J Numer Method Biomed Eng. 2018 Feb;34(2). doi: 10.1002/cnm.2918. Epub 2017 Sep 28.
7
Effect of Fontan geometry on exercise haemodynamics and its potential implications.
Heart. 2017 Nov;103(22):1806-1812. doi: 10.1136/heartjnl-2016-310855. Epub 2017 May 18.
8
Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects.
J Magn Reson Imaging. 2018 Jan;47(1):246-254. doi: 10.1002/jmri.25719. Epub 2017 Apr 8.
9
Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?
J Biomech. 2017 Jan 4;50:172-179. doi: 10.1016/j.jbiomech.2016.11.025. Epub 2016 Nov 10.
10
Elevated Low-Shear Blood Viscosity is Associated with Decreased Pulmonary Blood Flow in Children with Univentricular Heart Defects.
Pediatr Cardiol. 2016 Apr;37(4):789-801. doi: 10.1007/s00246-016-1352-4. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验