Suppr超能文献

一种通过靶向单倍型而非个体来分配低覆盖度测序资源的方法。

A method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals.

作者信息

Ros-Freixedes Roger, Gonen Serap, Gorjanc Gregor, Hickey John M

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.

出版信息

Genet Sel Evol. 2017 Oct 25;49(1):78. doi: 10.1186/s12711-017-0353-y.

Abstract

BACKGROUND

This paper describes a heuristic method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals. Low-coverage sequencing assembles high-coverage sequence information for every individual by accumulating data from the genome segments that they share with many other individuals into consensus haplotypes. Deriving the consensus haplotypes accurately is critical for achieving a high phasing and imputation accuracy. In order to enable accurate phasing and imputation of sequence information for the whole population, we allocate the available sequencing resources among individuals with existing phased genomic data by targeting the sequencing coverage of their haplotypes.

RESULTS

Our method, called AlphaSeqOpt, prioritizes haplotypes using a score function that is based on the frequency of the haplotypes in the sequencing set relative to the target coverage. AlphaSeqOpt has two steps: (1) selection of an initial set of individuals by iteratively choosing the individuals that have the maximum score conditional on the current set, and (2) refinement of the set through several rounds of exchanges of individuals. AlphaSeqOpt is very effective for distributing a fixed amount of sequencing resources evenly across haplotypes, which results in a reduction of the proportion of haplotypes that are sequenced below the target coverage. AlphaSeqOpt can provide a greater proportion of haplotypes sequenced at the target coverage by sequencing less individuals, as compared with other methods that use a score function based on haplotype frequencies in the population. A refinement of the initially selected set can provide a larger more diverse set with more unique individuals, which is beneficial in the context of low-coverage sequencing. We extend the method with an approach for filtering rare haplotypes based on their flanking haplotypes, so that only those that are likely to derive from a recombination event are targeted.

CONCLUSIONS

We present a method for allocating sequencing resources so that a greater proportion of haplotypes are sequenced at a coverage that is sufficiently high for population-based imputation with low-coverage sequencing. The haplotype score function, the refinement step, and the new approach for filtering rare haplotypes make AlphaSeqOpt more effective for that purpose than previously reported methods for reducing sequencing redundancy.

摘要

背景

本文描述了一种通过针对单倍型而非个体来分配低覆盖度测序资源的启发式方法。低覆盖度测序通过将个体与许多其他个体共享的基因组片段的数据累积为一致单倍型,为每个个体组装高覆盖度序列信息。准确推导一致单倍型对于实现高定相和插补准确性至关重要。为了能够对整个人群的序列信息进行准确的定相和插补,我们通过针对个体单倍型的测序覆盖度,在具有现有定相基因组数据的个体之间分配可用的测序资源。

结果

我们的方法称为AlphaSeqOpt,它使用基于测序集中单倍型频率相对于目标覆盖度的评分函数对单倍型进行优先级排序。AlphaSeqOpt有两个步骤:(1) 通过迭代选择在当前集合条件下得分最高的个体来选择一组初始个体,以及(2) 通过几轮个体交换来优化该集合。AlphaSeqOpt对于将固定量的测序资源均匀分布在单倍型上非常有效,这导致低于目标覆盖度测序的单倍型比例降低。与其他使用基于群体中单倍型频率的评分函数的方法相比,AlphaSeqOpt通过对更少的个体进行测序,可以提供更大比例在目标覆盖度下测序的单倍型。对最初选择的集合进行优化可以提供一个更大、更多样化且包含更多独特个体的集合,这在低覆盖度测序的背景下是有益的。我们通过一种基于侧翼单倍型过滤稀有单倍型的方法扩展了该方法,以便仅针对那些可能源自重组事件的单倍型。

结论

我们提出了一种分配测序资源的方法,以便更大比例的单倍型在足够高的覆盖度下进行测序,从而用于基于群体的低覆盖度测序插补。单倍型评分函数、优化步骤以及过滤稀有单倍型的新方法使AlphaSeqOpt在该目的上比先前报道的减少测序冗余的方法更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d29/5655873/3c700bd64b71/12711_2017_353_Fig1_HTML.jpg

相似文献

2
A method for the allocation of sequencing resources in genotyped livestock populations.
Genet Sel Evol. 2017 May 18;49(1):47. doi: 10.1186/s12711-017-0322-5.
6
Benchmarking phasing software with a whole-genome sequenced cattle pedigree.
BMC Genomics. 2022 Feb 15;23(1):130. doi: 10.1186/s12864-022-08354-6.
8
Phasing for medical sequencing using rare variants and large haplotype reference panels.
Bioinformatics. 2016 Jul 1;32(13):1974-80. doi: 10.1093/bioinformatics/btw065. Epub 2016 Feb 27.

引用本文的文献

1
Evaluation of Low-Coverage Sequencing Strategies for Whole-Genome Imputation in Pacific Abalone .
Int J Mol Sci. 2025 May 11;26(10):4598. doi: 10.3390/ijms26104598.
2
Developing best practices for genotyping-by-sequencing analysis in the construction of linkage maps.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad092. Epub 2023 Oct 27.
4
Genomic prediction with whole-genome sequence data in intensely selected pig lines.
Genet Sel Evol. 2022 Sep 24;54(1):65. doi: 10.1186/s12711-022-00756-0.
5
Rare and population-specific functional variation across pig lines.
Genet Sel Evol. 2022 Jun 3;54(1):39. doi: 10.1186/s12711-022-00732-8.
7
Comparison of the choice of animals for re-sequencing in two maternal pig lines.
Genet Sel Evol. 2022 Feb 19;54(1):16. doi: 10.1186/s12711-022-00706-w.
9
Towards a Cost-Effective Implementation of Genomic Prediction Based on Low Coverage Whole Genome Sequencing in Dezhou Donkey.
Front Genet. 2021 Nov 3;12:728764. doi: 10.3389/fgene.2021.728764. eCollection 2021.
10
Optimizing Sequencing Resources in Genotyped Livestock Populations Using Linear Programming.
Front Genet. 2021 Oct 22;12:740340. doi: 10.3389/fgene.2021.740340. eCollection 2021.

本文引用的文献

1
A method for the allocation of sequencing resources in genotyped livestock populations.
Genet Sel Evol. 2017 May 18;49(1):47. doi: 10.1186/s12711-017-0322-5.
2
Identification of key contributors in complex population structures.
PLoS One. 2017 May 16;12(5):e0177638. doi: 10.1371/journal.pone.0177638. eCollection 2017.
3
AlphaSim: Software for Breeding Program Simulation.
Plant Genome. 2016 Nov;9(3). doi: 10.3835/plantgenome2016.02.0013.
4
Low-, high-coverage, and two-stage DNA sequencing in the design of the genetic association study.
Genet Epidemiol. 2017 Apr;41(3):187-197. doi: 10.1002/gepi.22015. Epub 2016 Nov 4.
5
Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing.
Nat Genet. 2016 Aug;48(8):912-8. doi: 10.1038/ng.3595. Epub 2016 Jul 4.
6
Rapid genotype imputation from sequence without reference panels.
Nat Genet. 2016 Aug;48(8):965-969. doi: 10.1038/ng.3594. Epub 2016 Jul 4.
7
Reducing animal sequencing redundancy by preferentially selecting animals with low-frequency haplotypes.
J Dairy Sci. 2016 Jul;99(7):5526-5534. doi: 10.3168/jds.2015-10347. Epub 2016 Apr 13.
8
Fast imputation using medium or low-coverage sequence data.
BMC Genet. 2015 Jul 14;16:82. doi: 10.1186/s12863-015-0243-7.
10
Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle.
Genet Sel Evol. 2014 Jul 15;46(1):41. doi: 10.1186/1297-9686-46-41.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验