Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA.
Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA.
J Virol. 2018 Feb 15;92(4):e01556-17. doi: 10.1128/JVI.01556-17.
Coronavirus spike proteins from different genera are divergent, although they all mediate coronavirus entry into cells by binding to host receptors and fusing viral and cell membranes. Here, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at 3.3-Å resolution. The trimeric protein contains three receptor-binding S1 subunits that tightly pack into a crown-like structure and three membrane fusion S2 subunits that form a stalk. Each S1 subunit contains two domains, an N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD). PdCoV S1-NTD has the same structural fold as alpha- and betacoronavirus S1-NTDs as well as host galectins, and it recognizes sugar as its potential receptor. PdCoV S1-CTD has the same structural fold as alphacoronavirus S1-CTDs, but its structure differs from that of betacoronavirus S1-CTDs. PdCoV S1-CTD binds to an unidentified receptor on host cell surfaces. PdCoV S2 is locked in the prefusion conformation by structural restraint of S1 from a different monomeric subunit. PdCoV spike possesses several structural features that may facilitate immune evasion by the virus, such as its compact structure, concealed receptor-binding sites, and shielded critical epitopes. Overall, this study reveals that deltacoronavirus spikes are structurally and evolutionally more closely related to alphacoronavirus spikes than to betacoronavirus spikes; it also has implications for the receptor recognition, membrane fusion, and immune evasion by deltacoronaviruses as well as coronaviruses in general. IMPORTANCE In this study, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at a 3.3-Å resolution. This is the first atomic structure of a spike protein from the deltacoronavirus genus, which is divergent in amino acid sequences from the well-studied alpha- and betacoronavirus spike proteins. Here, we described the overall structure of the PdCoV spike and the detailed structure of each of its structural elements. Moreover, we analyzed the functions of each of the structural elements. Based on the structures and functions of these structural elements, we discussed the evolution of PdCoV spike protein in relation to the spike proteins from other coronavirus genera. This study combines the structure, function, and evolution of PdCoV spike protein and provides many insights into its receptor recognition, membrane fusion, and immune evasion.
冠状病毒的刺突蛋白来自不同的属,虽然它们都通过与宿主受体结合并融合病毒和细胞膜来介导冠状病毒进入细胞。在这里,我们以 3.3-Å 的分辨率确定了猪德尔塔冠状病毒 (PdCoV) 刺突蛋白的冷冻电子显微镜结构。三聚体蛋白包含三个紧密包装成冠状结构的受体结合 S1 亚基和三个形成柄的膜融合 S2 亚基。每个 S1 亚基包含两个结构域,一个 N 端结构域 (S1-NTD) 和 C 端结构域 (S1-CTD)。PdCoV S1-NTD 的结构折叠与α-和β-冠状病毒 S1-NTD 以及宿主半乳糖凝集素相同,它识别糖作为其潜在的受体。PdCoV S1-CTD 的结构折叠与α-冠状病毒 S1-CTD 相同,但结构与β-冠状病毒 S1-CTD 不同。PdCoV S1-CTD 与宿主细胞表面上未识别的受体结合。PdCoV S2 被来自不同单体亚基的 S1 的结构约束锁定在预融合构象中。PdCoV 刺突具有几个结构特征,可能有助于病毒逃避免疫,例如其紧凑的结构、隐藏的受体结合位点和受保护的关键表位。总体而言,这项研究表明,德尔塔冠状病毒的刺突在结构和进化上与α-冠状病毒的刺突更为密切相关,而不是与β-冠状病毒的刺突。这也对德尔塔冠状病毒以及一般冠状病毒的受体识别、膜融合和免疫逃避具有启示意义。
在这项研究中,我们以 3.3-Å 的分辨率确定了猪德尔塔冠状病毒 (PdCoV) 刺突蛋白的冷冻电子显微镜结构。这是第一个德尔塔冠状病毒属的刺突蛋白的原子结构,其氨基酸序列与研究充分的α-和β-冠状病毒刺突蛋白有很大的不同。在这里,我们描述了 PdCoV 刺突的整体结构及其各个结构元件的详细结构。此外,我们分析了每个结构元件的功能。基于这些结构元件的结构和功能,我们讨论了 PdCoV 刺突蛋白的进化与其他冠状病毒属的刺突蛋白的关系。这项研究结合了 PdCoV 刺突蛋白的结构、功能和进化,并为其受体识别、膜融合和免疫逃避提供了许多见解。