, Wassenaarseweg 52, 2333, AK, Leiden, Netherlands.
Universiteit van Amsterdam, Nieuwe Achtergracht 127, 1018, WS, Amsterdam, Netherlands.
Behav Res Methods. 2018 Oct;50(5):2016-2034. doi: 10.3758/s13428-017-0971-x.
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
确定治疗 A 比治疗 B 更有效或更无效的患者亚组对于个性化医学的发展至关重要。基于树的算法是检测此类相互作用的有用工具,但现有的算法都无法考虑到聚类或嵌套数据集结构,这些结构在心理学研究中尤为常见。因此,我们提出了广义线性混合效应模型树(GLMM 树)算法,该算法允许检测治疗亚组相互作用,同时考虑数据集的聚类结构。该算法使用基于模型的递归分区来检测治疗亚组相互作用,并使用 GLMM 来估计随机效应参数。在模拟研究中,GLMM 树在恢复治疗亚组相互作用方面具有更高的准确性、更高的预测准确性和更低的 II 型错误率,优于基于线性模型的递归分区和混合效应回归树。此外,GLMM 树的预测准确性平均略高于具有预指定交互作用的线性混合效应模型。我们在关于抑郁症治疗的个体患者水平数据荟萃分析中说明了 GLMM 树的应用。我们得出结论,GLMM 树是一种很有前途的探索性工具,可用于检测聚类数据集中的治疗亚组相互作用。