Suppr超能文献

利用人工智能预测经导管主动脉瓣置换术全因死亡率:一项系统评价和荟萃分析。

Harnessing the power of artificial intelligence in predicting all-cause mortality in transcatheter aortic valve replacement: a systematic review and meta-analysis.

作者信息

Sazzad Faizus, Ler Ashlynn Ai Li, Furqan Mohammad Shaheryar, Tan Linus Kai Zhe, Leo Hwa Liang, Kuntjoro Ivandito, Tay Edgar, Kofidis Theo

机构信息

Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

Front Cardiovasc Med. 2024 May 31;11:1343210. doi: 10.3389/fcvm.2024.1343210. eCollection 2024.

Abstract

OBJECTIVES

In recent years, the use of artificial intelligence (AI) models to generate individualised risk assessments and predict patient outcomes post-Transcatheter Aortic Valve Implantation (TAVI) has been a topic of increasing relevance in literature. This study aims to evaluate the predictive accuracy of AI algorithms in forecasting post-TAVI mortality as compared to traditional risk scores.

METHODS

Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses for Systematic Reviews (PRISMA) standard, a systematic review was carried out. We searched four databases in total-PubMed, Medline, Embase, and Cochrane-from 19 June 2023-24 June, 2023.

RESULTS

From 2,239 identified records, 1,504 duplicates were removed, 735 manuscripts were screened, and 10 studies were included in our review. Our pooled analysis of 5 studies and 9,398 patients revealed a significantly higher mean area under curve (AUC) associated with AI mortality predictions than traditional score predictions (MD: -0.16, CI: -0.22 to -0.10, < 0.00001). Subgroup analyses of 30-day mortality (MD: -0.08, CI: -0.13 to -0.03,  = 0.001) and 1-year mortality (MD: -0.18, CI: -0.27 to -0.10, < 0.0001) also showed significantly higher mean AUC with AI predictions than traditional score predictions. Pooled mean AUC of all 10 studies and 22,933 patients was 0.79 [0.73, 0.85].

CONCLUSION

AI models have a higher predictive accuracy as compared to traditional risk scores in predicting post-TAVI mortality. Overall, this review demonstrates the potential of AI in achieving personalised risk assessment in TAVI patients.

REGISTRATION AND PROTOCOL

This systematic review and meta-analysis was registered under the International Prospective Register of Systematic Reviews (PROSPERO), under the registration name "All-Cause Mortality in Transcatheter Aortic Valve Replacement Assessed by Artificial Intelligence" and registration number CRD42023437705. A review protocol was not prepared. There were no amendments to the information provided at registration.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/, PROSPERO (CRD42023437705).

摘要

目的

近年来,使用人工智能(AI)模型生成个性化风险评估并预测经导管主动脉瓣植入术(TAVI)后患者的预后,已成为文献中越来越受关注的话题。本研究旨在评估与传统风险评分相比,AI算法预测TAVI后死亡率的准确性。

方法

按照系统评价和Meta分析的首选报告项目(PRISMA)标准进行系统评价。我们总共检索了四个数据库——PubMed、Medline、Embase和Cochrane——检索时间为2023年6月19日至2023年6月24日。

结果

在识别出的2239条记录中,去除了1504条重复记录,筛选了735篇手稿,最终纳入本评价的有10项研究。我们对5项研究和9398例患者的汇总分析显示,与传统评分预测相比,AI死亡率预测的平均曲线下面积(AUC)显著更高(MD:-0.16,CI:-0.22至-0.10,<0.00001)。30天死亡率(MD:-0.08,CI:-0.13至-0.03,P = 0.001)和1年死亡率(MD:-0.18,CI:-0.27至-0.10,<0.0001)的亚组分析也显示,AI预测的平均AUC显著高于传统评分预测。所有10项研究和22933例患者的汇总平均AUC为0.79 [0.73,0.85]。

结论

与传统风险评分相比,AI模型在预测TAVI后死亡率方面具有更高的预测准确性。总体而言,本评价证明了AI在实现TAVI患者个性化风险评估方面的潜力。

注册与方案

本系统评价和Meta分析已在国际前瞻性系统评价注册库(PROSPERO)注册,注册名称为“人工智能评估经导管主动脉瓣置换术的全因死亡率”,注册号为CRD42023437705。未制定评价方案。注册时提供的信息未作修改。

系统评价注册

https://www.crd.york.ac.uk/,PROSPERO(CRD42023437705)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0911/11176615/cf6eb0b7f655/fcvm-11-1343210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验