Department of Methods & Statistics, Institute of Psychology, Leiden University, Leiden, The Netherlands.
Evidence Based Practice Unit, Anna Freud Centre/UCL, London, UK.
Psychother Res. 2021 Mar;31(3):313-325. doi: 10.1080/10503307.2020.1785037. Epub 2020 Jun 30.
Decision-tree methods are machine-learning methods which provide results that are relatively easy to interpret and apply by human decision makers. The resulting decision trees show how baseline patient characteristics can be combined to predict treatment outcomes for individual patients, for example. This paper introduces GLMM trees, a decision-tree method for multilevel and longitudinal data. To illustrate, we apply GLMM trees to a dataset of 3,256 young people (mean age 11.33, 48% girls) receiving treatment at one of several mental-health service providers in the UK. Two treatment outcomes (mental-health difficulties scores corrected for baseline) were regressed on 18 demographic, case and severity characteristics at baseline. We compared the performance of GLMM trees with that of traditional GLMMs and random forests. GLMM trees yielded modest predictive accuracy, with cross-validated multiple values of .18 and .25. Predictive accuracy did not differ significantly from that of traditional GLMMs and random forests, while GLMM trees required evaluation of a lower number of variables. GLMM trees provide a useful data-analytic tool for clinical prediction problems. The supplemental material provides a tutorial for replicating the GLMM tree analyses in .
决策树方法是一种机器学习方法,其结果相对易于解释和应用于人类决策者。例如,生成的决策树可以展示如何将基线患者特征组合起来,以预测个体患者的治疗结果。本文介绍了 GLMM 树,这是一种用于多层次和纵向数据的决策树方法。为了说明这一点,我们将 GLMM 树应用于一个包含 3256 名年轻人(平均年龄 11.33 岁,48%为女孩)的数据集,这些年轻人在英国的几家心理健康服务提供商之一接受治疗。将 18 项人口统计学、病例和基线严重程度特征回归到两个治疗结果(基线校正后的心理健康困难评分)上。我们将 GLMM 树的性能与传统 GLMM 和随机森林进行了比较。GLMM 树的预测准确性适中,交叉验证的多个 值分别为.18 和.25。预测准确性与传统 GLMM 和随机森林没有显著差异,而 GLMM 树需要评估的变量数量较低。GLMM 树为临床预测问题提供了一种有用的数据分析工具。补充材料提供了一个教程,用于复制. 中的 GLMM 树分析。