Bisset G W, Chowdrey H S
Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research, Mill Hill, London.
Q J Exp Physiol. 1988 Nov;73(6):811-72. doi: 10.1113/expphysiol.1988.sp003223.
The neurones in the supraoptic and paraventricular nuclei (SON and PVN) which secrete vasopressin are separate from those which secrete oxytocin and are distributed in different parts of the nuclei. They may be distinguished electrophysiologically by a characteristic phasic pattern of firing. A selective afferent neural input to these neurones would provide a mechanism for the release of vasopressin independently of oxytocin in response to appropriate physiological stimuli. Release of vasopressin is controlled by changes in blood volume or pressure ('volume control') and in plasma osmolality ('osmotic control'). Stimuli involved in volume control such as haemorrhage, hypotension and carotid occlusion cause vasopressin to be released into the circulation with little or no detectable oxytocin. An osmotic stimulus releases vasopressin alone in some species but not apparently in the rat in which both hormones are released. Volume control is mediated reflexly by peripheral receptors in the cardiovascular system. Activation of baro- and stretch receptors results in inhibition, and activation of chemoreceptors in stimulation, of release. Afferent impulses from these receptors are conveyed in the vagi and carotid sinus nerves to the NTS on the dorsal surface of the brain stem. All afferent impulses to the NTS are excitatory. It follows that the afferents from chemoreceptors must stimulate an excitatory, and those from baro- and stretch receptors an inhibitory, projection from the NTS to the vasopressin-secreting cells in the SON and PVN. Two alternative models are presented of the neural pathways and transmitters involved. The model of Fig. 2 shows an excitatory relay through a cholinoceptive area on the ventral surface of the brain stem which has been termed the 'nicotine-sensitive area' because topical application of nicotine to this area in the cat released vasopressin without oxytocin. An inhibitory relay is shown through the A1 group of noradrenergic neurones on the ventral surface which selectively innervate the vasopressin-secreting neurones in the SON. This model implies an inhibitory role for noradrenaline acting on beta- or alpha 2-receptors. However the most recent investigations suggest an excitatory, rather than inhibitory, function of the A1 noradrenergic neurones involving alpha 1-receptors. This is the basis of the model in Fig. 3. The A1 neurones project either directly to the SON and PVN or indirectly through the lateral preoptic nucleus which lies in close proximity to the SON. The nicotine-sensitive area may be coincident with the A1 group of noradrenergic neurones.(ABSTRACT TRUNCATED AT 400 WORDS)
视上核和室旁核(SON和PVN)中分泌血管加压素的神经元与分泌催产素的神经元是分开的,且分布在核的不同部位。它们在电生理上可通过一种特征性的放电相位模式来区分。对这些神经元的选择性传入神经输入将提供一种机制,使得在适当的生理刺激下,血管加压素能独立于催产素释放。血管加压素的释放受血容量或压力变化(“容量控制”)以及血浆渗透压变化(“渗透控制”)的调节。诸如出血、低血压和颈动脉阻塞等参与容量控制的刺激会使血管加压素释放进入循环,而催产素很少或几乎检测不到。在某些物种中,渗透刺激仅释放血管加压素,但在大鼠中并非如此,在大鼠中两种激素都会释放。容量控制是通过心血管系统中的外周感受器反射介导的。压力感受器和牵张感受器的激活会抑制血管加压素释放,而化学感受器的激活则会刺激其释放。来自这些感受器的传入冲动通过迷走神经和颈动脉窦神经传导至脑干背表面的孤束核(NTS)。所有传入至NTS的冲动都是兴奋性的。由此可见,来自化学感受器的传入神经必定刺激了从NTS到SON和PVN中分泌血管加压素细胞的兴奋性投射,而来自压力感受器和牵张感受器的传入神经则刺激了抑制性投射。文中提出了两种涉及神经通路和神经递质的替代模型。图2所示的模型显示,通过脑干腹表面一个对胆碱敏感的区域存在兴奋性中继,该区域被称为“尼古丁敏感区”,因为在猫的这个区域局部应用尼古丁会释放血管加压素而不释放催产素。通过腹表面的A1组去甲肾上腺素能神经元存在抑制性中继,这些神经元选择性地支配SON中分泌血管加压素的神经元。该模型意味着去甲肾上腺素作用于β或α2受体具有抑制作用。然而,最近的研究表明,A1去甲肾上腺素能神经元涉及α1受体,具有兴奋性而非抑制性功能。这就是图3所示模型的基础。A1神经元要么直接投射到SON和PVN,要么间接通过紧邻SON的外侧视前核投射。尼古丁敏感区可能与A1组去甲肾上腺素能神经元重合。(摘要截选至400字)