College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
Department of Biology, Montclair State University, Montclair, NJ, 07043, USA.
Plant J. 2017 Dec;92(6):1143-1156. doi: 10.1111/tpj.13750. Epub 2017 Nov 20.
The complex interactions between transcription factors (TFs) and their target genes in a spatially and temporally specific manner are crucial to all cellular processes. Reconstruction of gene regulatory networks (GRNs) from gene expression profiles can help to decipher TF-gene regulations in a variety of contexts; however, the inevitable prediction errors of GRNs hinder optimal data mining of RNA-Seq transcriptome profiles. Here we perform an integrative study of Zea mays (maize) seed development in order to identify key genes in a complex developmental process. First, we reverse engineered a GRN from 78 maize seed transcriptome profiles. Then, we studied collective gene interaction patterns and uncovered highly interwoven network communities as the building blocks of the GRN. One community, composed of mostly unknown genes interacting with opaque2, brittle endosperm1 and shrunken2, contributes to seed phenotypes. Another community, composed mostly of genes expressed in the basal endosperm transfer layer, is responsible for nutrient transport. We further integrated our inferred GRN with gene expression patterns in different seed compartments and at various developmental stages and pathways. The integration facilitated a biological interpretation of the GRN. Our yeast one-hybrid assays verified six out of eight TF-promoter bindings in the reconstructed GRN. This study identified topologically important genes in interwoven network communities that may be crucial to maize seed development.
转录因子(TFs)与它们的靶基因在空间和时间上的复杂相互作用对于所有细胞过程都是至关重要的。从基因表达谱重建基因调控网络(GRNs)有助于在各种背景下破译 TF-基因调控;然而,GRNs 的不可避免的预测误差阻碍了 RNA-Seq 转录组谱的最佳数据挖掘。在这里,我们对玉米(玉米)种子发育进行了综合研究,以鉴定复杂发育过程中的关键基因。首先,我们从 78 个玉米种子转录组谱中反向工程构建了一个 GRN。然后,我们研究了集体基因相互作用模式,并揭示了高度交织的网络社区作为 GRN 的构建块。一个社区,主要由与不透明 2、易碎胚乳 1 和收缩 2 相互作用的大多数未知基因组成,有助于种子表型。另一个社区主要由在基底胚乳转移层中表达的基因组成,负责营养物质的运输。我们进一步将我们推断的 GRN 与不同种子区室和不同发育阶段和途径的基因表达模式进行了整合。这种整合促进了对 GRN 的生物学解释。我们的酵母单杂交实验验证了重建的 GRN 中 8 个 TF-启动子结合中的 6 个。这项研究确定了交织网络社区中拓扑上重要的基因,这些基因可能对玉米种子发育至关重要。