Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom;
Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11350-11355. doi: 10.1073/pnas.1711371114. Epub 2017 Oct 10.
In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent [Formula: see text] are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from [Formula: see text] to [Formula: see text] (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with [Formula: see text] assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.
在资源稀缺的环境中,采用正确的搜索策略可以决定成败,甚至生死。在不同的尺度上,这适用于细胞质中分子的相遇、动物在自然景观中寻找食物或伴侣、灾难救援中的救援人员在搜索和救援行动中的搜索、以及遗传计算机算法在参数空间中的探索。当在同质环境中寻找稀疏目标时,弹道和扩散步骤的组合被认为是最佳的;特别是,具有 [公式:见文本] 的更大的弹道 Lévy 飞行通常被认为可以优化搜索过程。然而,大多数搜索空间都呈现出复杂的地形。在这些更现实的场景中,最佳搜索策略是什么?在这里,我们表明环境的地形会显著改变最佳搜索策略,使其变得不那么弹道化,更具布朗运动特征。我们考虑一个主动粒子在具有 Lévy 分布步长的 2D 空间中执行盲目巡游搜索,其中步长的指数从 [公式:见文本] 到 [公式:见文本](布朗运动)变化。我们表明,当存在边界、障碍和障碍物时,最佳搜索策略取决于环境的地形,在考虑的整个范围内,[公式:见文本] 取中间值。我们使用简单的标度论点来解释这些发现,并讨论它们对搜索者大小变化的稳健性。我们的结果与从动物觅食到微泳者的趋药性到生化反应速率的不同尺度的搜索问题有关。