Suppr超能文献

巨噬细胞样纳米颗粒同时吸收内毒素和促炎细胞因子以用于脓毒症管理。

Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management.

机构信息

Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093.

Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11488-11493. doi: 10.1073/pnas.1714267114. Epub 2017 Oct 9.

Abstract

Sepsis, resulting from uncontrolled inflammatory responses to bacterial infections, continues to cause high morbidity and mortality worldwide. Currently, effective sepsis treatments are lacking in the clinic, and care remains primarily supportive. Here we report the development of macrophage biomimetic nanoparticles for the management of sepsis. The nanoparticles, made by wrapping polymeric cores with cell membrane derived from macrophages, possess an antigenic exterior the same as the source cells. By acting as macrophage decoys, these nanoparticles bind and neutralize endotoxins that would otherwise trigger immune activation. In addition, these macrophage-like nanoparticles sequester proinflammatory cytokines and inhibit their ability to potentiate the sepsis cascade. In a mouse bacteremia model, treatment with macrophage mimicking nanoparticles, termed MΦ-NPs, reduced proinflammatory cytokine levels, inhibited bacterial dissemination, and ultimately conferred a significant survival advantage to infected mice. Employing MΦ-NPs as a biomimetic detoxification strategy shows promise for improving patient outcomes, potentially shifting the current paradigm of sepsis management.

摘要

脓毒症是由细菌感染引起的失控性炎症反应导致的,目前仍是全球性的高发病率和高死亡率疾病。临床上目前缺乏有效的脓毒症治疗方法,主要以支持性治疗为主。在这里,我们报告了一种用于脓毒症管理的巨噬细胞仿生纳米颗粒的开发。这些纳米颗粒由聚合物核外包覆源自巨噬细胞的细胞膜制成,具有与源细胞相同的抗原性外表面。作为巨噬细胞诱饵,这些纳米颗粒可以结合并中和内毒素,否则内毒素会引发免疫激活。此外,这些类似巨噬细胞的纳米颗粒还可以隔离促炎细胞因子,并抑制其增强脓毒症级联反应的能力。在小鼠菌血症模型中,用被称为 MΦ-NPs 的巨噬细胞模拟纳米颗粒治疗可降低促炎细胞因子水平、抑制细菌扩散,最终为感染的小鼠带来显著的生存优势。采用 MΦ-NPs 作为仿生解毒策略显示出改善患者预后的潜力,可能改变目前脓毒症管理的模式。

相似文献

1
Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11488-11493. doi: 10.1073/pnas.1714267114. Epub 2017 Oct 9.
5
Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist.
J Pharmacol Exp Ther. 2003 Mar;304(3):1093-102. doi: 10.1124/jpet.102.044487.
6
Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release.
Int Immunopharmacol. 2004 Feb;4(2):223-34. doi: 10.1016/j.intimp.2003.12.006.
7
Decoy Nanozymes Enable Multitarget Blockade of Proinflammatory Cascades for the Treatment of Multi-Drug-Resistant Bacterial Sepsis.
Research (Wash D C). 2022 Sep 26;2022:9767643. doi: 10.34133/2022/9767643. eCollection 2022.
8
Functionalized dendrimers as endotoxin sponges.
Bioorg Med Chem Lett. 2005 Mar 1;15(5):1295-8. doi: 10.1016/j.bmcl.2005.01.026.
9
Curcumin Analog L48H37 Prevents Lipopolysaccharide-Induced TLR4 Signaling Pathway Activation and Sepsis via Targeting MD2.
J Pharmacol Exp Ther. 2015 Jun;353(3):539-50. doi: 10.1124/jpet.115.222570. Epub 2015 Apr 10.
10
Macrophage-Membrane-Camouflaged Nonviral Gene Vectors for the Treatment of Multidrug-Resistant Bacterial Sepsis.
Nano Lett. 2022 Oct 12;22(19):7882-7891. doi: 10.1021/acs.nanolett.2c02560. Epub 2022 Sep 28.

引用本文的文献

2
Biomimetic magnetobacterial microrobots for active pneumonia therapy.
Nat Commun. 2025 Aug 22;16(1):7856. doi: 10.1038/s41467-025-63231-6.
3
Recent Advances in Membrane-Coated Micro/Nanomotors in Biological Applications.
Int J Nanomedicine. 2025 Jul 28;20:9427-9446. doi: 10.2147/IJN.S526671. eCollection 2025.
4
Engineered hybrid cell membrane nanosystems for treating cardiovascular diseases.
Mater Today Bio. 2025 Jun 17;33:101992. doi: 10.1016/j.mtbio.2025.101992. eCollection 2025 Aug.
6
Nanodrug Delivery Systems for Direct Clearance or Neutralization of LPS.
Int J Nanomedicine. 2025 Jul 3;20:8653-8673. doi: 10.2147/IJN.S510037. eCollection 2025.
7
Macrophage-mimicking nanodiscs for treating systemic infection caused by methicillin-resistant .
Sci Adv. 2025 Jul 4;11(27):eadw7511. doi: 10.1126/sciadv.adw7511.
9
Nanocarrier-Based Targeting of Pattern Recognition Receptors as an Innovative Strategy for Enhancing Sepsis Therapy.
Adv Healthc Mater. 2025 Sep;14(23):e2501146. doi: 10.1002/adhm.202501146. Epub 2025 Jul 2.
10
Nanoparticle approaches for manipulating cytokine delivery and neutralization.
Front Immunol. 2025 Jun 10;16:1592795. doi: 10.3389/fimmu.2025.1592795. eCollection 2025.

本文引用的文献

2
Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization.
Adv Mater. 2017 Apr;29(16). doi: 10.1002/adma.201606209. Epub 2017 Feb 15.
4
Nanoparticle biointerfacing by platelet membrane cloaking.
Nature. 2015 Oct 1;526(7571):118-21. doi: 10.1038/nature15373. Epub 2015 Sep 16.
5
The safety of polymyxin antibiotics.
Expert Opin Drug Saf. 2015;14(11):1687-701. doi: 10.1517/14740338.2015.1088520. Epub 2015 Sep 12.
6
Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation.
Sci Transl Med. 2015 Sep 2;7(303):303ra140. doi: 10.1126/scitranslmed.aab3459.
7
Current and forthcoming approaches for systemic detoxification.
Adv Drug Deliv Rev. 2015 Aug 1;90:1-2. doi: 10.1016/j.addr.2015.07.010.
8
Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers.
ACS Nano. 2015 Jun 23;9(6):6450-8. doi: 10.1021/acsnano.5b02132. Epub 2015 Jun 8.
9
Adverse reactions associated with systemic polymyxin therapy.
Pharmacotherapy. 2015 Jan;35(1):28-33. doi: 10.1002/phar.1493. Epub 2014 Sep 30.
10
An extracorporeal blood-cleansing device for sepsis therapy.
Nat Med. 2014 Oct;20(10):1211-6. doi: 10.1038/nm.3640. Epub 2014 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验