Hu Che-Ming J, Fang Ronnie H, Wang Kuei-Chun, Luk Brian T, Thamphiwatana Soracha, Dehaini Diana, Nguyen Phu, Angsantikul Pavimol, Wen Cindy H, Kroll Ashley V, Carpenter Cody, Ramesh Manikantan, Qu Vivian, Patel Sherrina H, Zhu Jie, Shi William, Hofman Florence M, Chen Thomas C, Gao Weiwei, Zhang Kang, Chien Shu, Zhang Liangfang
Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA.
Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
Nature. 2015 Oct 1;526(7571):118-21. doi: 10.1038/nature15373. Epub 2015 Sep 16.
Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
功能性纳米颗粒的开发可能会受到意外的材料特性和生物事件的阻碍,这些特性和事件会影响纳米颗粒在复杂的、生理相关系统中的有效性。尽管在自下而上的纳米工程和表面化学方面取得了进展,但简化的功能化方法在复制自然界中存在的复杂界面方面仍然不足,并且无法避免外来材料的暴露。在这里,我们报告了包裹在人血小板质膜中的聚合物纳米颗粒的制备,血小板是一种独特的细胞碎片群体,可粘附于多种与疾病相关的底物。所得纳米颗粒具有外向单层膜涂层,该涂层用与血小板相关的免疫调节和粘附抗原进行功能化。与未涂层的颗粒相比,包裹血小板膜的纳米颗粒被巨噬细胞样细胞摄取的能力降低,并且在自体人血浆中缺乏颗粒诱导的补体激活。包裹的纳米颗粒还表现出类似血小板的特性,例如对受损的人和啮齿动物血管的选择性粘附以及与血小板粘附病原体的增强结合。在冠状动脉再狭窄的实验大鼠模型和全身细菌感染的小鼠模型中,多西他赛和万古霉素分别通过模拟血小板的纳米颗粒递送时显示出增强的治疗效果。血小板膜包裹方法实现的多方面生物界面为开发用于疾病靶向递送的功能性纳米颗粒提供了一种新方法。