Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E8977-E8986. doi: 10.1073/pnas.1705032114. Epub 2017 Oct 9.
The actin cytoskeleton powers membrane deformation during many cellular processes, such as migration, morphogenesis, and endocytosis. Membrane phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P], regulate the activities of many actin-binding proteins (ABPs), including profilin, cofilin, Dia2, N-WASP, ezrin, and moesin, but the underlying molecular mechanisms have remained elusive. Moreover, because of a lack of available methodology, the dynamics of membrane interactions have not been experimentally determined for any ABP. Here, we applied a combination of biochemical assays, photobleaching/activation approaches, and atomistic molecular dynamics simulations to uncover the molecular principles by which ABPs interact with phosphoinositide-rich membranes. We show that, despite using different domains for lipid binding, these proteins associate with membranes through similar multivalent electrostatic interactions, without specific binding pockets or penetration into the lipid bilayer. Strikingly, our experiments reveal that these proteins display enormous differences in the dynamics of membrane interactions and in the ranges of phosphoinositide densities that they sense. Profilin and cofilin display transient, low-affinity interactions with phosphoinositide-rich membranes, whereas F-actin assembly factors Dia2 and N-WASP reside on phosphoinositide-rich membranes for longer periods to perform their functions. Ezrin and moesin, which link the actin cytoskeleton to the plasma membrane, bind membranes with very high affinity and slow dissociation dynamics. Unlike profilin, cofilin, Dia2, and N-WASP, they do not require high "stimulus-responsive" phosphoinositide density for membrane binding. Moreover, ezrin can limit the lateral diffusion of PI(4,5)P along the lipid bilayer. Together, these findings demonstrate that membrane-interaction mechanisms of ABPs evolved to precisely fulfill their specific functions in cytoskeletal dynamics.
肌动蛋白细胞骨架为许多细胞过程中的膜变形提供动力,例如迁移、形态发生和内吞作用。膜磷酸肌醇,特别是磷脂酰肌醇 4,5-二磷酸[PI(4,5)P],调节许多肌动蛋白结合蛋白(ABP)的活性,包括丝氨酸-脯氨酸富脯氨酸蛋白、原肌球蛋白、Dia2、N-WASP、埃兹蛋白和膜突蛋白,但潜在的分子机制仍然难以捉摸。此外,由于缺乏可用的方法,任何 ABP 与膜的相互作用动力学尚未通过实验确定。在这里,我们应用了生化测定、光漂白/激活方法和原子分子动力学模拟的组合,以揭示 ABP 与富含磷酸肌醇的膜相互作用的分子原理。我们表明,尽管这些蛋白质使用不同的结构域进行脂质结合,但它们通过相似的多价静电相互作用与膜结合,而没有特定的结合口袋或穿透脂质双层。引人注目的是,我们的实验表明,这些蛋白质在膜相互作用的动力学和它们感知的磷酸肌醇密度范围方面表现出巨大差异。丝氨酸-脯氨酸富脯氨酸蛋白和原肌球蛋白与富含磷酸肌醇的膜发生短暂、低亲和力相互作用,而 F-肌动蛋白组装因子 Dia2 和 N-WASP 在富含磷酸肌醇的膜上停留更长时间以发挥其功能。埃兹蛋白和膜突蛋白将肌动蛋白细胞骨架与质膜连接起来,与膜具有非常高的亲和力和缓慢的离解动力学。与丝氨酸-脯氨酸富脯氨酸蛋白、原肌球蛋白、Dia2 和 N-WASP 不同,它们不需要高“刺激反应性”磷酸肌醇密度来结合膜。此外,埃兹蛋白可以限制 PI(4,5)P 在脂质双层中的侧向扩散。总之,这些发现表明 ABP 的膜相互作用机制进化为精确满足其在细胞骨架动力学中的特定功能。