Suppr超能文献

针对异质人群的风险预测及其在住院预测中的应用。

Risk prediction for heterogeneous populations with application to hospital admission prediction.

作者信息

Huling Jared D, Yu Menggang, Liang Muxuan, Smith Maureen

机构信息

Department of Statistics, University of Wisconsin-Madison, Wisconsin 53706, U.S.A.

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Wisconsin 53792, U.S.A.

出版信息

Biometrics. 2018 Jun;74(2):557-565. doi: 10.1111/biom.12769. Epub 2017 Oct 26.

Abstract

This article is motivated by the increasing need to model risk for large hospital and health care systems that provide services to diverse and complex patients. Often, heterogeneity across a population is determined by a set of factors such as chronic conditions. When these stratifying factors result in overlapping subpopulations, it is likely that the covariate effects for the overlapping groups have some similarity. We exploit this similarity by imposing structural constraints on the importance of variables in predicting outcomes such as hospital admission. Our basic assumption is that if a variable is important for a subpopulation with one of the chronic conditions, then it should be important for the subpopulation with both conditions. However, a variable can be important for the subpopulation with two particular chronic conditions but not for the subpopulations of people with just one of those two conditions. This assumption and its generalization to more conditions are reasonable and aid greatly in borrowing strength across the subpopulations. We prove an oracle property for our estimation method and show that even when the structural assumptions are misspecified, our method will still include all of the truly nonzero variables in large samples. We demonstrate impressive performance of our method in extensive numerical studies and on an application in hospital admission prediction and validation for the Medicare population of a large health care provider.

摘要

本文的动机源于为向多样化和复杂患者提供服务的大型医院及医疗保健系统进行风险建模的需求日益增加。通常,人群中的异质性由一组因素决定,如慢性病。当这些分层因素导致亚人群重叠时,重叠组的协变量效应很可能具有一定的相似性。我们通过对预测诸如住院等结果时变量的重要性施加结构约束来利用这种相似性。我们的基本假设是,如果一个变量对患有某一种慢性病的亚人群很重要,那么它对患有两种慢性病的亚人群也应该很重要。然而,一个变量可能对患有两种特定慢性病的亚人群很重要,但对仅患有这两种慢性病之一的人群亚组并不重要。这个假设及其对更多情况的推广是合理的,并且极大地有助于在亚人群之间借用力量。我们证明了我们估计方法的一种神谕性质,并表明即使结构假设被错误设定,我们的方法在大样本中仍会包含所有真正非零的变量。我们在广泛的数值研究以及对一家大型医疗保健提供商的医疗保险人群进行住院预测和验证的应用中展示了我们方法令人印象深刻的性能。

相似文献

1
Risk prediction for heterogeneous populations with application to hospital admission prediction.
Biometrics. 2018 Jun;74(2):557-565. doi: 10.1111/biom.12769. Epub 2017 Oct 26.
3
Hospital Contributions to Variability in the Use of ICUs Among Elderly Medicare Recipients.
Crit Care Med. 2017 Jan;45(1):75-84. doi: 10.1097/CCM.0000000000002025.
8
Dynamic prediction of hospital admission with medical claim data.
BMC Med Inform Decis Mak. 2019 Jan 31;19(Suppl 1):18. doi: 10.1186/s12911-019-0734-y.

引用本文的文献

本文引用的文献

1
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
2
4
Risk adjustment of Medicare capitation payments using the CMS-HCC model.
Health Care Financ Rev. 2004 Summer;25(4):119-41.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验