Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.
Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.
Med Image Anal. 2018 Jan;43:129-141. doi: 10.1016/j.media.2017.10.001. Epub 2017 Oct 16.
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies.
成像技术的不断进步使人们能够更全面地对人体解剖结构和生理学进行表型分析。与此同时,成像成本的降低使得成像技术在大型临床试验和人群成像研究中得到了广泛应用。磁共振成像(MRI)尤其提供了一种一站式多维心血管生理学和病理学生物标志物。广泛的分析方法为临床和研究提供了复杂的心脏图像评估和量化。然而,大多数方法仅在相对较小的数据库上进行了评估,这些数据库通常无法进行公开和公平的基准测试。因此,发表的性能指标在不同研究之间无法直接比较,其在大型临床试验或人群成像队列中的翻译和可扩展性也不确定。大多数现有技术仍然依赖于相当多的手动干预,以初始化和质量控制分割过程,当处理数千张图像时,这变得非常繁琐。本文的贡献有三点。首先,我们提出了一种完全自动的心脏 MRI 分割初始化方法,该方法使用图像特征和随机森林回归来预测 MRI 体积中心脏和关键解剖标志的初始位置。在处理完整的成像数据库时,该技术预测了与长轴和短轴图像的初始粗略交点相关的最佳校正位移和位置。其次,我们首次引入了一种能够识别无视觉评估的不正确心脏分割的质量控制措施。该方法使用随机森林分类器中的统计、模式和分形描述符来检测无法纠正或从后续统计分析中删除的错误。最后,我们在适用于大规模心脏 MRI 数据库的心脏分割全流水线中验证了这些新技术。基于来自心脏图谱项目的超过 1200 个病例的结果,这些新技术有望实现人群研究的全自动初始化和质量控制。