Suppr超能文献

人工智能在心脏磁共振左心室分析临床应用中的进展

Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance.

作者信息

Le Yinghui, Zhao Chongshang, An Jing, Zhou Jiali, Deng Dongdong, He Yi

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China.

Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, 310058 Hangzhou, Zhejiang, China.

出版信息

Rev Cardiovasc Med. 2024 Dec 19;25(12):447. doi: 10.31083/j.rcm2512447. eCollection 2024 Dec.

Abstract

Cardiac magnetic resonance (CMR) imaging enables a one-stop assessment of heart structure and function. Artificial intelligence (AI) can simplify and automate work flows and improve image post-processing speed and diagnostic accuracy; thus, it greatly affects many aspects of CMR. This review highlights the application of AI for left heart analysis in CMR, including quality control, image segmentation, and global and regional functional assessment. Most recent research has focused on segmentation of the left ventricular myocardium and blood pool. Although many algorithms have shown a level comparable to that of human experts, some problems, such as poor performance of basal and apical segmentation and false identification of myocardial structure, remain. Segmentation of myocardial fibrosis is another research hotspot, and most patient cohorts of such studies have hypertrophic cardiomyopathy. Whether the above methods are applicable to other patient groups requires further study. The use of automated CMR interpretation for the diagnosis and prognosis assessment of cardiovascular diseases demonstrates great clinical potential. However, prospective large-scale clinical trials are needed to investigate the real-word application of AI technology in clinical practice.

摘要

心脏磁共振成像(CMR)能够一站式评估心脏结构和功能。人工智能(AI)可以简化工作流程并实现自动化,提高图像后处理速度和诊断准确性;因此,它对CMR的许多方面都有很大影响。本综述重点介绍了AI在CMR左心分析中的应用,包括质量控制、图像分割以及整体和局部功能评估。最近的研究主要集中在左心室心肌和血池的分割上。尽管许多算法已显示出与人类专家相当的水平,但仍存在一些问题,如基底部和心尖部分割性能不佳以及心肌结构误识别等。心肌纤维化的分割是另一个研究热点,此类研究的大多数患者队列患有肥厚性心肌病。上述方法是否适用于其他患者群体有待进一步研究。使用自动CMR解释进行心血管疾病的诊断和预后评估显示出巨大的临床潜力。然而,需要进行前瞻性大规模临床试验来研究AI技术在临床实践中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9491/11683706/91fb8e39d528/2153-8174-25-12-447-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验