Suppr超能文献

图像分割中的自动化质量控制:在英国生物库心血管磁共振成像研究中的应用。

Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study.

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, Queen's Gate, London, SW7 2AZ, UK.

Division of Brain Sciences, Dept. of Medicine, Imperial College London, Queen's Gate, London, SW7 2AZ, UK.

出版信息

J Cardiovasc Magn Reson. 2019 Mar 14;21(1):18. doi: 10.1186/s12968-019-0523-x.

Abstract

BACKGROUND

The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to automatically detect when a segmentation method fails in order to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions.

METHODS

To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4800 cardiovascular magnetic resonance (CMR) scans. We then apply our method to a large cohort of 7250 CMR on which we have performed manual QC.

RESULTS

We report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using the predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4800 scans for which manual segmentations were available. We mimic real-world application of the method on 7250 CMR where we show good agreement between predicted quality metrics and manual visual QC scores.

CONCLUSIONS

We show that Reverse classification accuracy has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.

摘要

背景

大规模研究包括人群成像的趋势对质量控制(QC)提出了新的挑战。当使用自动处理工具(例如图像分割方法)来得出定量测量值或生物标志物以进行进一步分析时,这是一个特别的问题。在大规模情况下,对每个分割结果进行手动检查和目视 QC 是不可行的。但是,能够自动检测分割方法何时失败非常重要,以避免将错误的测量值包含在后续分析中,否则可能会导致错误的结论。

方法

为了克服这一挑战,我们探索了一种基于反向分类准确性的预测分割质量的方法,该方法使我们能够根据每个病例来区分成功和失败的分割。我们在一个新的、大规模的手动注释的 4800 例心血管磁共振(CMR)扫描数据集上验证了这种方法。然后,我们将我们的方法应用于一个 7250 例 CMR 大队列,我们对其进行了手动 QC。

结果

我们报告了用于预测分割质量指标的结果,包括 Dice 相似系数(DSC)和表面距离测量值。作为初始验证,我们提供了 400 例扫描的数据,表明使用预测的 DSC 分数对低质量和高质量分割进行分类的准确率为 99%。作为进一步的验证,我们显示了真实分数和预测分数之间的高度相关性,并且在有手动分割的 4800 例扫描中,分类准确率为 95%。我们在 7250 例 CMR 中模拟了该方法的实际应用,显示了预测质量指标与手动视觉 QC 评分之间的良好一致性。

结论

我们表明,在 UK Biobank Imaging Study 等大规模人群成像中,反向分类准确性具有对每个病例进行准确且全自动分割 QC 的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验